Getting weaker across layers: The tonal phonology of Shona without stratal re-ranking

Eva Zimmermann, joint work with Jochen Trommer

University of Warsaw, linguistics colloquium June 17th, 2022

Main claim

- Harmonic Layer Theory where phonological elements can get incrementally stronger/weaker at every optimization cycle predicts inter-stratal conspiracies from a single phonological grammar
- The theory is more restrictive than alternatives based on multiple grammars within a language and makes testable empirical predictions:

 The theory is more restrictive than alternatives based on multiple grammars within a language and makes testable empirical predictions:
 - P1 Monotonicity of phonological changes across strata
 - P2 Consistency of strength in a given stratum
 - P3 Pervasiveness (and cyclicity) of Cooperation
- It further strengthens the arguments for Gradient Symbolic Representations in phonology.

Plan

1. Shona: A challenge for a single phonology?

- 2. Harmonic Layer Theory
- 2.1 Background assumptions
- 2.2 A HLT account of Shona

3. Discussion

Shona: A challenge for a single phonology?

The riddle in a nutshell: Inter-stratal conspiracies in Shona

→ the same marked structure – adjacent H's – is resolved differently in different morphological contexts

Background on Shona

- a Bantu language spoken in Zimbabwe
- all data taken from the Zezuni dialect and taken from Myers (1986) and Myers (1997)
- ightharpoonup syllables (=the tone-bearing unit; TBU) can be high-toned (= \acute{V}) or low-toned (=V)
- L-tones are taken to be (underlyingly) absent/inserted later
- (1) í bangá '(it) is a hoe' H H H i ba nga

Domains in Shona

- different morpho-syntactic domains are relevant for the phonology
 - (2) Domains in verbal units, given in Myers (1997)

(stem)	root+suffixes
1 [macrostem]	optional prefixes (Obj, Subj/Tns _{Subj/Part/Neg})+stem
2 {phonological word}	optional clitics (e.g. copula, remaining inflection)+macrostem
3 phrase	

(3) {[há]-[ti-(teng-es-e)]} HORT-1PL/SUBJ-buy-CAUS-FV 'let us sell' (Myers, 1997, 870) (4) {[ku]-[(téng-és-á)]} {[(sádza)]} INF-buy-CAUS-FV porridge 'to sell porridge' (Myers, 1997, 862)

The relevant phonological processes: Avoidance of tone-less (=L-toned) TBU's

(5) Spreading to two following TBUs (=H2S)

(6) Spreading to one following TBU (=H1S)

The relevant phonological processes: Avoidance of two adjacent H-tones (=OCP)

(7) Deletion of the second H (=Del)

(8) Fusion into one (=Fus)

(9) Retraction of a multiply associated first tone (=Retr)

Stratal Differences: Overview

(10)

	H-spread	OCP avoided by:				
1 [Macrostem]	H2S	No H-spreading/Retr >	Fus			
2 {PhWd}	H1S	No H-spreading/Retr >	Del			
3 Phrase	H1S	No H-spreading/Retr >	tolerated			

Avant: Notation

underlying H-tones are notated with v, surface H-tones with v

(11) <u>á</u>-ch<u>a</u>-t<u>é</u>ng-á

Illustrating examples: Spreading

- (12) H2S at 1, triggered by Obj {[ti-táris-e]} 1PL/sUBJ-look-FV 'we would look' (Myers, 1997, 870)
- (13) H1S at 2; triggered by clitic copula {[i]-[sádza]} cop-porridge '(it) is porridge' (Myers, 1997, 860)
- (14) H2S at 1 and subsequent H1S at 3 {[ku]-[téng-és-á]} {[sádza]} INF-buy-CAUS-FV porridge 'to sell porridge' (Myers, 1997, 862)

Illustrating examples: Avoidance of OCP by non-spreading

- (15) H1S at 2; triggered by clitic copula {[i]-[sádza]} cop-porridge '(it) is porridge' (Myers, 1997, 860)
- (16) H1S at 2 blocked if OCP would result {[i]-[badzá]} cop-hoe '(it) is a hoe' (Myers, 1997, 860)

Illustrating examples: Avoidance of OCP by Del

(17) Del at 2 {[ndi-chá]-[teng-es-a]} 1.sg-fut-buy-caus-FV 'I will sell' (Myers, 1997, 856)

(18)

H ^a [ndi cha]	H ^b [teng es a]	underlying representations
H ^a [ndi cha]	H ^b [teng es a]	1: Two macrostems
H ^a [ndi cha] [t	eng es a]	2: One PhWd

Illustrating examples: Avoidance of OCP by Fus

```
(19) Fus at 1
{[ku]-[mú-téng-és-ér-a]}
имг-ову-buy-саиз-applied-FV
'to sell him/her' (Myers, 1997, 869)
```

Illustrating examples: Avoidance of OCP by Fus+Del

(20) Del at 2, fed by Fus at 1 {[há]-[ti-tenges-e]} HORT-1PL/SUBJ-buy-CAUS-FV 'let us sell' (Myers, 1997, 870)

(21)

H ^a [ha]	H ^b H ^c	underlying representations
H ^a [ha]	H ^{b,c} [ti teng es e]	1: Two macrostems
H ^a [ha] [ti	teng es e]	2: One PhWd

Illustrating examples: Avoidance of OCP by Fus+Retr

(22) Retr at 2, fed by Fus at 1 {[á-cha]-[téng-á]} 3sg-fut=buy-FV 's/he will buy' (Myers, 1997, 864)

(23)

H ^a H ^b a cha	H ^c teng a	underlying representations
H ^{a,b} a cha	H ^c teng a	1: Two macrostems
H ^{a,b} a cha	H ^c teng a	2: One PhWd

Interaction of processes at different layers: More complex example

(24)

Illustrating examples: OCP cannot be avoided

```
(25) OCP tolerated if Retr impossible at 3 {[badz\acute{a}]} {[g\acute{u}r\acute{u}]} hoe big 'big hoe' (Myers, 1997, 874, FN.21)
```

Summary: Stratal Differences

(26)

	H-spread	OCP avoided by:			
1 [Macrostem]	H2S	No H-spreading/Retr >	Fus		
2 {PhWd}	H1S	No H-spreading/Retr >	Del		
3 Phrase	H1S	No H-spreading/Retr >	tolerated		

Harmonic Layer Theory

Background assumptions

Harmonic Layer Theory: Overview

- phonological evaluations at every morphological layer
- linguistics elements have gradient activity that results in gradient constraint violations (Gradient Symbolic Representations; =GSR)
- tones can get stronger or weaker in every layer and the 'same' tone can react differently to identical tonotactic problems in larger domains since it has different activity
- → different phonological behaviour results from a single phonological grammar

(=vs. stratal model (Kiparsky, 2000; Bermúdez-Otero, pear,t; Trommer, 2011) with optimizations at every stratum with a potentially different grammar)

Background: Gradient Symbolic Representations (=GSR)

- all linguistic symbols have activity that can gradiently differ and 1 is the default activity (Smolensky and Goldrick, 2016; Rosen, 2016)
- any change in activity is a faithfulness violation different activities result in gradient violations of faithfulness
- elements can be gradiently active in the output and thus violate markedness constraints gradiently
 - (?Zimmermann, 2020, 2021; Faust and Smolensky, 2017; Jang, 2019; Walker, 2019)
- grammatical computation modeled inside Harmonic Grammar where constraints are weighted (Legendre et al., 1990; Potts et al., 2010)

GSR and constraint violations

- constraints are violated/satisfied relative to the activity of the relevant elements
- ✓ elements preferably have the default activity of 1 (=*Weak, *Strong)
- e.g. the underlyingly weakly active segment in (27)
 - is easier to delete than a fully active segment
 - is costly to realize
 - tolerates more marked structures

(27) Gradient activity=gradient constraint violations

b ₁ a ₁ t ₁ -p _{0.5}		*Weak	MaxS	DEPS	*CC	
		10	10	10	10	
a.	b ₁ a ₁ t ₁ p ₁			-0.5	-1	-15
b.	$b_1a_1t_1p_{0.5}$	-0.5			-0.75	-12.5
C.	b ₁ a ₁ p _{0.5}	-0.5	-1			-15
r⊠ d.	b ₁ a ₁ t ₁		-0.5			-5

Only fully active S

Faithful realization of weak S

Deletion of fully active S

Deletion of weakly active S

GSR: Broader Context

- that linguistic elements are not categorical but have strength differences is not a new idea
 - (e.g. Rizzi (1986) and Koster (1986) for functional categories in syntax, Garde (1965): some lexical accent system are based on scalar grades of accent strength,...)
- other work on non-categorical elements in neural networks (e.g. Corina (1994) on induction of prosodic categories in neural networks)
- can also predict phonetic gradience (e.g. subphonemic gradience in word-final devoicing, nasal place assimilation, flapping (e.g. Braver, 2013), vowel harmony is gradient (McCollum, 2018),...)
- **different from a binary** distinction into strong/weak (Inkelas, 2015; Vaxman, 2016a,b; Sande, 2017)
- → here: predictions of gradient (=numerical) phonological strength in an OT-system as explanation for 'exceptional' behaviour

General Arguments for GSR

- 1. Embedded in a general computational architecture for cognition (=Gradient Symbolic Computation, Smolensky and Goldrick, 2016)
- 2. A unified account for different exceptional phonological behaviours:
 - liaison consonants in French (Smolensky and Goldrick, 2016)
 - semi-regularity of voicing in Japanese Rendaku (Rosen, 2016)
 - allomorphy in Modern Hebrew (Faust and Smolensky, 2017)
 - lexical accent in Lithuanian (Kushnir, 2017)
 - tone sandhi in Oku (Nformi and Worbs, 2017)
 - tone allomorphy in San Miguel el Grande Mixtec (Zimmermann, 2017a,b)
 - lexical stress in Moses Columbian Salishan (Zimmermann, 2018c)
 - exceptional tone (non)spreading in San Molinos Mixtec (Zimmermann, 2018a)
 - interaction of phonological/lexical gemination/lenition in Italian (Amato, 2018)
 - compound stress in Sino-Japanese (Rosen, 2018)
 - (interacting) ghost segments in Welsh (Zimmermann, 2018b)
 - .

HLT: Predictable loss/gain of activity at every layer

constraint interaction can ensure that all instances of a certain element (e.g.H) gain or loose a fixed amount of activity at every optimization cycle

A HLT account of Shona

Activity loss at every stratum

constraint interaction ensures that all H's decay by 0.2 at every layer

(28)Predictable decay by 0.2

- (29)* Σ_{H} : Assign -x violation for every H_x .
- (30) $|\Delta S| < 0$: Assign -x violation for every input tone H_a corresponding to output tone H_b where a-b=x and x is > 0.
- (31) $|\Delta S| \le 0.2$: Assign -x violation for every input tone H_a corresponding to output tone H_b where a-b=x and x is > 0.2.

Shona HLT account: Decrease of H-tone activation

(32) Macrostem level: $H_{1.0} \rightarrow H_{0.8}$

H _{1.0}	$ \Delta S \leq 0.2$	Max H	$^*\Sigma_{\mathrm{H}}$	$ \Delta \mathcal{S} \leq 0$	\mathcal{H}
1.0	w=∞	w=11	w=10	w=1	
a. H _{1.0}			-1.0		-10
b. Ø		-1.0			-11
c. H _{0.5}	-0.5		-0.5	-0.5	∞
■ d. H _{0.8}			-0.8	-0.2	-8.2

(33) PhWd level: $H_{0.8} \rightarrow H_{0.6}$

H _{0.8}		$ \Delta S \le 0.2$ $w = \infty$	Max H w=11	*Σ _H w=10	$\begin{aligned} \Delta \mathcal{S} &\leq 0 \\ w &= 1 \end{aligned}$	\mathcal{H}
a. H _{0.}	3			-0.8		-8
b. Ø			-0.8			-8.8
c. H _{0.5}	,	-0.3		-0.5	-0.3	∞
™ d. H _{0.}	5			-0.6	-0.2	6.2

Different behaviour for spreading: In a nutshell

providing a TBU with a tone to avoid a violation of SPEC gets less helpful, the weaker the tone is

(34)

INPUT OUTPUT

1 H2S
$$H_1 - \acute{V} \lor V \rightarrow H_{0.8} - \acute{V} \lor \acute{V}$$

$$\rightarrow 0.8xSpec > {}^*H_{3TBU}$$
2 H2S $H_{0.8} - \acute{V} \lor V \rightarrow H_{0.6} - \acute{V} \lor \acute{V}$

$$\rightarrow {}^*H_{3TBU} > 0.6xSpec$$
3 H1S $H_{0.6} - \acute{V} \lor V \rightarrow H_{0.4} - \acute{V} \lor V$

 \rightarrow *H_{3TRII} > 0.4xSpec

Shona HLT account: Constraints I

- (35) Specify Assign -(1-X) violation for every TBU associated with tone T with activity X (and no tone is X=0).
- (36) *H_{2TBU}
 Assign -1 violation for every tone that is associated to more than one TBU.
- $^{*}H_{3TBU}$ Assign -1 violation for every tone that is associated to more than two TBU's.

Tableaux: H2S at 1 but H1S at 2

(38)1: H2S

	Spec	*H _{3TBU}	*H _{2TBU}	\mathcal{H}
H _{1.0} V V	90	56	1	1
a. H _{0.8} – Ý V V	-2.2			-198
b. H _{0.8} – Ý Ý V	-1.4		-1.0	-127
© c. H _{0.8} − Ý Ý Ý	-0.6	-1.0	-1.0	-111

(39)2: H1S

H _{0.8} V V	SPEC 90	*H _{3TBU} 56	*H _{2TBU}	\mathcal{H}
a. H _{0.6} – Ý V V	-2.4			-216
■ b. H _{0.6} – Ý Ý V	-1.8		-1.0	-163
c. H _{0.6} – Ý Ý Ý	-1.2	-1.0	-1.0	-165

Tableaux: H1S at 2 and 3

(40)2: H1S, repeated

	Spec	*H _{3TBU}	*H _{2TBU}	\mathcal{H}
H _{0.8} V V	90	56	1	$ $ n
a. H _{0.6} – Ý V V	-2.4			-216
b. H _{0.6} − Ý Ý V	-1.8		-1.0	-163
c. H _{0.6} – Ý Ý Ý	-1.2	-1.0	-1.0	-165

(41) 3: H1S

	Spec	*H _{3TBU}	*H _{2TBU}	\mathcal{H}
H _{0.6} V V	90	56	1	71
a. H _{0.4} – Ý V V	-2.6			-234
b. H _{0.4} − Ý Ý V	-2.2		-1.0	-199
c. H _{0.4} – Ý Ý Ý	-1.8	-1.0	-1.0	-219

Different behaviour for OCP problems: In a nutshell

- the weaker the H, the cheaper deletion (and the more costly fusion)
- the weaker the H, the easier it is to tolerate the OCP

1 Fusion
$$H_1$$
 + H_1 \rightarrow $(H_{0.8}H_{0.8})$

$$\rightarrow$$
 Max $>$ Unif

$$\rightarrow$$
 0.8xOCP $>$ Max / Unif

2 Deletion
$$H_{0.8}$$
 + $H_{0.8}$ \rightarrow $H_{0.8}$

$$\rightarrow$$
 Unif $> 0.8xMax$

$$\rightarrow$$
 0.6xOCP $>$ 0.8xMax / Unif

$$\rightarrow$$
 UNIF / 0.6xMax > 0.4xOCP

Shona HLT account: Constraints II

- (43) MaxT: Assign -x violation for every H_x in the input without an output correspondent.
- (44) OCP: Assign $-\frac{x+y}{2}$ violation for every pair of adjacent tones H_x and H_y that are associated with adjacent TBU's.
- (45) UNIF: Assign -1 violation for every pair of input tones corresponding to the same output tone.

Tableaux: OCP resolution I

(46) 1: Tone Fusion

	OCP	MaxT	Unif	21
H _{1.0} H _{1.0}	23	16	14	\mathcal{H}
a. H _{0.8} H _{0.8}	-0.8			-18.4
b. H _{0.8}		-1.0		-16
c. (H _{0.8} H _{0.8})			-1.0	-14

(47) 2: Tone Deletion

	OCP	MaxT	Unif	\mathcal{H}
H _{0.8} H _{0.8}	23	16	14	π
a. H _{0.6} H _{0.6}	-0.6			-13.8
№ b. H _{0.6}		-0.8		-12.8
c. (H _{0.6} H _{0.6})			-1.0	-14

Tableaux: OCP resolution II

(48) 2: Tone Deletion, repeated

H _{0.8} H _{0.8}	OCP 23	MaxT 16	Unif 14	\mathcal{H}
1.0.8 1.0.8	23	10	17	
a. H _{0.6} H _{0.6}	-0.6			-13.8
№ b. H _{0.6}		-0.8		-12.8
c. (H _{0.6} H _{0.6})			-1.0	-14

(49) 3: OCP violation tolerated

	OCP	MaxT	Unif	\mathcal{H}
H _{0.6} H _{0.6}	23	16	14	π
a. H _{0.4} H _{0.4}	-0.4			-9.2
b. H _{0.4}		-0.6		-9.6
c. (H _{0.4} H _{0.4})			-1.0	-14

HLT account of Shona

Discussion

Predictions of HLT

- in contrast to accounts based on multiple grammars, HLT makes several testable predictions:
 - P1 Monotonicity of phonological changes across strata
 - P2 Consistency of strength in a given stratum
 - P3 Pervasiveness (and cyclicity) of Cooperation

P1: Monotonicity

Representations become monotonically stronger or weaker

- + single constant grammar
- = monotonicity of phonological behaviour

(50) Monotonicity of thresholds for phonological behavior in HLT $T_{x} \longrightarrow \text{Phonological behavior 1}$ $T_{x-y} \longrightarrow \text{Phonological behavior 2}$ Weaker: Threshold 2 $T_{x-y-z} \longrightarrow \text{Phonological behavior 3}$

P1: Monotonicity in Shona

(51) The Shona pattern

OCP:	H-spread
Fus	H2S
Del	H1S
tolerated	H1S
	Fus Del

(52) Impossible in HLT

	OCP:	H-spread
1 [Macrostem]	Fus	H2S
2 {PhWd}	Del	H1S
3 Phrase	Fus	H1S

(53) No monotonicity with stratum-specific rankings

Macrostem Level:	MaxH	\gg	OCP
PhWd Level:	OCP	\gg	MaxH
Phrase Level:	MaxH	>>	OCP

P2: Consistency of strength

Different repairs for elements must be contingent with their input strength since constraint weighting remains constant.

(54)Consistency-obeying: Giphende Nominal Morphology Citation Form: a. L-LL b. L-LH c. L-HL d. L-HH Focus: H-HL L-HL L-HH L-LH Genitive: H-HL H-LH L-HL L-HH Predicative: H-HL H-LH H-HI. H-HH

(55) Consistency-violating: Construction-specific rankings

		H] _{PrWd}	HH
Construction 1	$M_1 \gg F \gg M_2$	Deletion	No deletion
Construction 2	$M_2 \gg F \gg M_1$	No Deletion	Deletion

P3: Pervasiveness of Cooperation

Multilateral conditioning of morphophonological processes: Fused phonological material of different strength may contribute cumulatively to phonological behavior

- → Lexical conditioning is the existence of weak elements that need to undergo fusion with another weak element
- (56) Cooperation as lexical idiosyncrasy

Summary

- HLT predicts inter-stratal conspiracies as in Shona from a single grammar if elements can consistently loose/gain activity at every optimization step
- In contrast to accounts based on multiple grammars, it makes testable predictions about possible different behaviours within a language

References I

- Amato, I. (2018). A gradient view of Raddoppiamento Fonosintattico. ms., University of Leipzig.
- Bermúdez-Otero, R. (in preparation). Stratal Optimality Theory. Oxford University Press, Oxford.
- Bermúdez-Otero, R. (to appear). Stratal phonology. In The Routledge handbook of phonological theory. Routledge, Abingdon.
- Braver, A. (2013). Degrees of incompleteness in neutralization: Paradigm uniformity in a phonetics with weighted constraints. PhD thesis, Rutgers University, New Brunswick.
- Corina, D. P. (1994). The induction of prosodic constraints. In Lima, S. D., Corrigan, R., and Iverson, G., editors, The Reality of Linguistic Rules, pages 115–145. John Benjamins.
- Faust, N. and Smolensky, P. (2017). Activity as an alternative to autosegmental association. talk given at mfm 25, 27th May, 2017.
- Garde, P. (1965). Accentuation et morphologie. La Linguistique, 1:25-39.
- Inkelas, S. (2015). Confidence scales: A new approach to derived environment effects. In Hsiao, Y. E. and Wee, L.-H., editors, *Capturing Phonological Shades Within and Across Languages*, pages 45–75. Cambridge Scholars Publishing, Newcastle upon Tyne.
- Jang, H. (2019). Emergent phonological gradience from articulatory synergies: simulations of coronal palatalization. talk, presented at the LSA 2019, New York, January 05, 2019.
- Kiparsky, P. (2000). Opacity and cyclicity. The Linguistic Review, 17:351-67.
- Koster, J. (1986). The relation between pro-drop, scrambling, and verb movements. Ms., Rijksuniversiteit Groningen.
- Kushnir, Y. (2017). Accent strength in Lithuanian. talk, given at the workshop on Strength in Grammar, Leipzig, November 12, 2017.

References II

- Legendre, G., Miyata, Y., and Smolensky, P. (1990). Harmonic grammar a formal multi-level connectionist theory of linguistic well-formedness: Theoretical foundations. *Proceedings of the 12th annual conference of the cognitive* science society, pages 388–395.
- McCollum, A. (2018). Gradient morphophonology: Evidence from Uyghur vowel harmony. Talk at AMP 2018, San Diego, October 06, 2018.
- Myers, S. (1986). Tone and the Structure of Words in Shona. PhD thesis, University of Massachusetts, Amherst.
- Myers, S. (1997). OCP effects in Optimality Theory. Natural Language and Linguistic Theory, 15(4):847-892.
- Nformi, J. and Worbs, S. (2017). Gradient tones obviate floating features in Oku tone sandhi. talk at the Workshop on Strength in Grammar, Leipzig, November 10, 2017.
- Potts, C., Pater, J., Jesney, K., Bhatt, R., and Becker, M. (2010). Harmonic grammar with linear programming: From linear systems to linguistic typology. *Phonology*, pages 77–117.
- Rizzi, L. (1986). Null objects in Italian and the theory of pro. Linguistic Inquiry, 17:501-57.
- Rosen, E. (2016). Predicting the unpredictable: Capturing the apparent semi-regularity of rendaku voicing in Japanese through Harmonic Grammar. In Clem, E., Dawson, V., Shen, A., Skilton, A. H., Bacon, G., Cheng, A., and Maier, E. H., editors, *Proceedings of BLS 42*, pages 235–249. Berkeley Linguistic Society, Berkeley.
- Rosen, E. (2018). Evidence for gradient input features from Sino-Japanese compound accent. poster, presented at AMP 2018, San Diego, October 06, 2018.
- Sande, H. (2017). Distributing morphologically conditioned phonology: Three case studies from Guébie. PhD thesis, University of California, Berkeley.
- Smolensky, P. and Goldrick, M. (2016). Gradient symbolic representations in grammar: The case of French liaison. Ms, Johns Hopkins University and Northwestern University, ROA 1286.
- Trommer, J. (2011). Phonological aspects of Western Nilotic mutation morphology. Habilitation, Leipzig University.

References III

- Vaxman, A. (2016a). Diacritic weight in the extended accent first theory. In *University of Pennsylvania Working Papers in Linguistics*. University of Pennsylvania.
- Vaxman, A. (2016b). How to Beat without Feet: Weight Scales and Parameter Dependencies in the Computation of Word Accent. PhD thesis, University of Connecticut.
- Walker, R. (2019). Gradient feature activation and the special status of coronals. talks, presented at P Φ F 2019, April 05, 2019.
- Zimmermann, E. (2017a). Being exceptional is being weak: tonal exceptions in San Miguel el Grande Mixtec. poster, presented at AMP 2017, New York, September 16, 2017.
- Zimmermann, E. (2017b). Gradient symbols and gradient markedness: a case study from Mixtec tones. talk, given at the 25th mfm, 27th May, 2017.
- Zimmermann, E. (2018a). Exceptional non-triggers are weak: The case of Molinos Mixtec. talk at OCP 15, January 13, 2018.
- Zimmermann, E. (2018b). Gradient symbolic representations and the typology of ghost segments: An argument from gradient markedness. talk, given at AMP 2018, San Diego, October 06, 2018.
- Zimmermann, E. (2018c). Gradient symbolic representations in the output: A case study from Moses Columbian Salishan stress. In Hucklebridge, S. and Nelson, M., editors, *Proceedings of NELS 48*, pages 275–284.
- Zimmermann, E. (2020). Gradient symbolic representations and the typology of phonological exceptions. invited talk at the MIT linguistics colloquium, MIT, February 28, 2020.
- Zimmermann, E. (2021). Faded copies: Reduplication as distribution of activity. Glossa, 6:58.