Gradient Symbolic Representations and the Typology of Phonological Exceptions

Eva Zimmermann

Frankfurt December 2nd, 2020

Kolloquium

Main Claim

The assumption of Gradient Symbolic Representations that phonological elements can have different degrees of activation allows a unified explanation for patterns of exceptions.

Main Claim

- The assumption of Gradient Symbolic Representations that phonological elements can have different degrees of activation allows a unified explanation for patterns of exceptions.
- & Four predictions set this account apart from alternatives:
 - ① Unified account for (non)undergoers and (non)triggers.
 - ② Exceptionality for more than one process.
 - ③ Degrees of exceptionality.
 - ① Implicational restrictions between exceptionality patterns.

Plan

- 1. Proposal: Gradient Symbolic Representation in Input/Output
- 2. Case study: Exceptional vowels in Finnish
- 2.1 Data
- 2.2 GSRO Account
- 2.3 Summary
- 3. Four Predictions of the Model
- 3.1 ① Unified account of (non)triggers and (non)undergoers
- 3.2 ② Exceptionality for More than one Process
- 3.3 3 Degrees of Exceptionality
- 4. Alternative Accounts of Exceptionality
- 4.1 Lexically Indexed Constraints
- 4.2 Autosegmental Defectivity
- 5. Summary

Proposal: Gradient Symbolic Representation in Input/Output

Gradient Symbolic Representation in Input/Output (=GSRO)

- all linguistic symbols have activity that can gradiently differ and 1 is the default activity (Smolensky and Goldrick, 2016; Rosen, 2016)
- any change in underlying activity is a faithfulness violation different activities result in **gradient violations of faithfulness**
- elements can be gradiently active in the output and thus violate markedness constraints gradiently
 (Zimmermann, 2017*a,b*; Faust and Smolensky, 2017; Jang, 2019; Walker, 2019)
- grammatical computation modeled inside Harmonic Grammar where constraints are weighted (Legendre et al., 1990; Potts et al., 2010)

GSRO: Gradient Constraint Violations

- constraints are violated/satisfied relative to the activity of the relevant elements
- elements preferably have the default activity of 1 (=*Weak, *Strong)
- & e.g. the underlyingly weakly active segment in (1)
 - is easier to delete than a fully active segment
 - is costly to realize
 - is easier to tolerate if it creates a marked structure
- (1) Gradient activity=gradient constraint violations

b ₁ a	1t ₁ -p _{0.5}	*Weak	MaxS	DEPS	*CC	
		10	10	10	10	
a.	$b_1a_1t_1p_1$			-0.5	-1	-15
b.	$b_1a_1t_1p_{0.5}$	-0.5			-0.75	-12.5
c.	b ₁ a ₁ p _{0.5}	-0.5	-1			-15
r⊠ d.	b ₁ a ₁ t ₁		-0.5			-5

Only fully active S
Faithful realization of weak S
Deletion of fully active S
Deletion of weakly active S

General Arguments for GSR(O)

- Embedded in a general computational architecture for cognition (=Gradient Symbolic Computation, Smolensky and Goldrick, 2016)
- 2. A unified account for different exceptional phonological behaviours:
 - liaison consonants in French (Smolensky and Goldrick, 2016)

 - allomorphy in Modern Hebrew (Faust and Smolensky, 2017)

 - fone sandhi in Oku (Nformi and Worbs, 2017)
 - ◆ tone allomorphy in San Miguel el Grande Mixtec (Zimmermann, 2017a,b)

 - exceptional tone (non)spreading in San Molinos Mixtec (Zimmermann, 2018a)

 - compound stress in Sino-Japanese (Rosen, 2018)
 - (interacting) ghost segments in Welsh (Zimmermann, 2018b)
 - **ℐ** …

Gradient Symbolic Representations: Broader Context

- that linguistic elements are not categorical but have strength differences is **not a new** idea
 - (e.g. Rizzi (1986) and Koster (1986) for functional categories in syntax, Garde (1965): some lexical accent system are based on scalar grades of accent strength,...)
- different from a binary distinction into strong/weak (Inkelas, 2015; Vaxman, 2016*a,b*; Sande, 2017)
- other work on non-categorical elements in neural networks
 (e.g. Corina (1994) on induction of prosodic categories in neural networks)
- can also predict **phonetic gradience**(e.g. subphonemic gradience in word-final devoicing, nasal place assimilation, flapping
 (e.g. Braver, 2013), vowel harmony is gradient (McCollum, 2018),...)
- → here: predictions of gradient (=numerical) phonological strength in an OT-system as explanation for 'exceptional' behaviour

GSRO and Exceptions

if the underlying representation of two morphemes in a language contain identical phonological elements with different degrees of activity, they might show different phonological behaviour (=one is described as 'exception')

GSRO and Exceptions

- if the underlying representation of two morphemes in a language contain identical phonological elements with different degrees of activity, they might show different phonological behaviour (=one is described as 'exception')
 - → this representational explanation for different phonological behaviour dispenses with true 'exceptionality': A single phonological grammar and contrasting underlying representations.

Case study: Exceptional vowels in Finnish

Exceptional Triggers and Undergoers: Finnish

(Anttila, 2002; Pater, 2006)

& exceptional repair for heteromorphemic /ai/ sequences

Exceptional Triggers and Undergoers: Finnish

(Anttila, 2002; Pater, 2006)

& exceptional repair for heteromorphemic /ai/ sequences

type of repair (assimilation, deletion, or variation between both) is morpheme-specific

Exceptional Triggers: Vowel Assimilation to Avoid /ai/ (Anttila, 2002)

- certain /i/-initial suffixes (PL/PsT) trigger raising of a preceding /a/
- other /i/-initial suffixes (e.g. COND) don't trigger raising (2-b)

(2)

	underlying	surface		
a.	pala-i	paloi	'burn'-Рsт	p.4
	tavara-i-ssa	tavaroissa	'thing'-PL-INE	p.5
	kana-i-ssa	kan oi ssa	'hen'-PL-INE	p.4
	kihara-i-ssa	kihar oi ssa	'curl'-PL-Ine	p.13
	korea-i-ssa	kore oi ssa	'Korea'-PL-INE	p.13
	kahvi-la-i-ssa	kahvil oi ssa	'cafe'-PL-INE	p.5
	kana-la-i-ssa	kanal oi ssa	'chicken shed'-PL-INE	p.5
b.	anta-isi	ant <mark>ai</mark> si	'give'-Cond	(Pater, 2010, 133)

Exceptional Triggers: Vowel Deletion to Avoid /ai/ (Anttila, 2002)

for certain morphemes, the presence of an exceptional triggering suffix result in deletion of a preceding /a/

(3)

underlying	surface		
otta-i	otti	'take'-Рsт	p.4
jumala-i-ssa	jumal <mark>i</mark> ssa	'God'-PL-INE	p.5
suola-i-ssa	suolissa	'salt'-PL-INE	p.6
kihara-i-ssa	kihar <mark>i</mark> ssa	'curly'-PL-INE	p.13
korea-i-ssa	koreissa	'beautiful'-PL-Ine	p.13
tutki-va-i-ssa	tutkivissa	'researching'-PL-INE	p.5
anta-va-i-ssa	antav <mark>i</mark> ssa	'giving'-PL-INE	p.5

Exceptional Triggers: Alternation between Assimilation and Deletion

for yet other morphemes, variation between deletion and assimilation is observed

(4)

	underlying	surface	
itara–i–ssa	itaroissa ∼ itarissa	'stingy'-PL-INE	p.5
taitta–i	taittoi \sim taitti	'break'-Рsт	p.6
omena-i-ssa	omenoissa \sim omenissa	'apple'-PL-INE	p.9

Summary: Exceptional Triggers and Undergoers

there are two 'classes' of (/i/-initial) suffixes:

NT no repair for /ai/-sequences

T repair for /ai/-sequences

 \sim Exceptional Trigger

there are three 'classes' of (/a/-final) morphemes:

A assimilation before T-suffix

D deletion before T-suffix

AD assimilation/deletion before T-suffix

 \sim Exceptional Undergoer 1

 \sim Exceptional Undergoer 2

(5)

a#-morphemes	outcome	#i-morphemes
A		
AD	ai	NT
D		
A	oi	
AD	oi ∼ i	Т
D	i	

Caution: Only Half the Story (Anttila, 2002)

- phonological regularities/tendencies:

 - phonological generalizations apply exceptionless in underived bisyllabic stems
- → **Dissimilation** effects: deletion avoids two high/labial sounds
- N's typically assimilate, A's typically delete

GSRO Account in a Nutshell

T vs. NT suffixes

- higher activity of /i₃/ results in a violation of *ai that crosses the threshold for a repair

D vs. A vs. AD

- \bullet default activity of $/a_1/$ results in assimilation
- lower activity of /a_{0.6}/ results in deletion since weak segments are marked and are preferably avoided
- intermediate activity of /a_{0.8}/ shows variable behaviour

GSRO Account in a Nutshell

lexical representations of /a/-final and /i/-initial morphemes differ to predict A-AD-D and T-NT contrast

(6)

a#	surface	#i
A: /a ₁ /	$[a_1i_1]$	
AD: $/a_{0.8}/$	$[a_{0.8}i_1]$	NT: /i ₁ /
D: $/a_{0.6}/$	$[a_{0.6}i_1]$	
A: /a ₁ /	[o ₁ i ₃]	
AD: $/a_{0.8}/$	$[o_{0.8}i_3]\sim[i_3]$	T: /i ₃ /
D: $/a_{0.6}/$	$[i_3]$	

GSRO Account: Constraints

- (7) a. *ai $triggers \ raising/deletion$ Assign -X violations for every $[i]_X$ with activity X immediately preceded by an [a].
 - b. Max[Lw] penalizes raising/deletion Assign -X violations for every activity X of [+low] that is present in the input but not the output.
 - c. Max[HI] penalizes lowering/deletion Assign -X violations for every activity X of [+high] that is present in the input but not the output.

GSRO Account: Constraints

- (8) a. *Weak Assign -1-X violations for every phonological element with activity X<1.
 - *STRONG
 Assign -X-1 violations for every phonological element with activity X>1.

Avant: Segments Keep Their Underlying Activity in the Output

(9)

t ₁ a _{0.6}	DEPS	*Weak	
1 0.0	100	41	
■ a. t ₁ a _{0.6}		-0.4	-16
b. t ₁ a ₁	-0.4		-40

(10)

t ₁ a ₃		MaxV 10	*Strong 1	
r® a.	t ₁ a ₃		-2	-2
b.	t ₁ a ₁	-2		-20

Non-Triggering Suffix and /a₁/

a -1 violation of *ai is not important enough to trigger a repair(11)

a ₁ i ₁		Мах[ні]	*Weak	Max[LW]	*ai	MaxV	
		100	41	37	16	10	
☞ a.	a ₁ i ₁				-1		-16
b.	o ₁ i ₁			-1			-37
c.	i ₁			-1		-1	-47
d.	a ₁ e ₁	-1					-100
e.	a ₁	-1				-1	-110

Triggering Suffix and /a₁/

- the violation of *ai caused by a more active /i₃/ crosses the threshold for triggering a repair
- $\ensuremath{\mathfrak{E}}$ assimilation is optimal since V-deletion implies a superset of violations

(12)

$a_1 i_3$		*Weak	Max[LW]	*ai	MaxV	
		41	37	16	10	
a.	$a_1 i_3$			-3		-48
rs b.	o ₁ i ₃		-1			-37
c.	i ₁		-1		-1	-47

Triggering Suffix and /a_{0.6}/

for a weak V, deletion solves the additional problem of avoiding a weak segment and the weak V is less protected by MaxV to begin with

(13)

a _{0.6} i ₃		*Weak	Max[LW]	*ai	MaxV	
		41	37	16	10	
a.	a _{0.6} i ₃	-0.4		-3		-64.4
b.	o _{0.6} i ₃	-0.4	-1			-53.4
© C.	i ₃		-1		-0.6	-43

Non-Triggering Suffix and /a_{0.6}/

an one misprediction for weak segments outside of T-suffix-contexts: marked structure of a weak V is tolerated

(14)

a _{0.6} i ₁	*Weak	Max[LW]	*ai	MaxV	
	41	37	16	10	
r a. a _{0.6} i₁	-0.4		-1		-32.4
b. o _{0.6} i ₁	-0.4	-1			-53.4
c. i ₁		-1		-0.6	-43

Additional Assumption: Variation and MaxEnt

- optionality is modeled with MaxEnt (Johnson, 2002; Goldwater and Johnson, 2003; Wilson, 2006)
- optionality is in principle orthogonal to the assumption of gradient activity!
- all exemplary weights given are calculated by the UCLA Maxent Grammar Tool (Hayes, 2009)

Triggering Suffix and /a_{0.8}/

№ V with an activity between 1-0.6 shows optionality between both repairs*

(15)

$a_{0.8} i_3$		*Weak	Max[LW]	*ai	MaxV		
		41	37	16	10		Probability
a.	a _{0.8} i ₃	-0.2		-3		-56.2	2.5782981684922935E-6
☞ b.	o _{0.8} i ₃	-0.2	-1			-45.2	0.5000118759256124
☞ C.	i ₃		-1		-0.8	-45	0.4999830712776138

 $0.2 \times {}^*Weak \sim 0.8 \times MaxV$

*Tableaux above: Winning candidate had a probability of at least 0.9999.

(Lexical Factors of) Finnish Assimilation/Deletion in GSRO: Summary

Relevant activity thresholds: Underlying morpheme representations (16)

- i₁ not enough to trigger a repair to avoid a violation of *ai
- i₃ threshold to avoid *ai

(17)

- a₁ default repair of assimilation
- a_{0.8} variation between assimilation and deletion
- a_{0.6} deletion

(only activity differences for /a/ and /i/ were considered: activity differences for other vowels have no interesting effect (at least not for *ai)

Recall: Phonological Regularities?

- account can easily integrate the account of the phonological conditions from Anttila (2002):

 - $m{\mathscr{D}}$ syllable-counting effect follows from domain-specific OCP_{ROUND}- ϕ
 - e.g. categorical restriction that deletion after /o/ in even-numbered stems: high-weight of OCP_{ROUND}-φ

Four Predictions of the Model

GSRO: Four Predictions = Four Arguments

- ① A unified account for exceptional (non)undergoers and (non)triggers.
 → cf. Finnish case study
- ② Elements can be exceptional for more than one process.
- There can be different degrees of exceptionality (for the same process within a language).
 - → cf. Finnish case study
- Exceptionality patterns within one language underlie implicational restrictions.

Types of Exceptions: Toy Example

(Classification into undergoers/triggers from Lakoff (1970))

A general phonological rule in Lg1: Parasitic Backness Vowel Harmony (=VH)

pon-ek
$$\rightarrow$$
 ponok
put-ek \rightarrow putek

VH if same height No VH if different height

Types of Exceptions: Toy Example

(Classification into undergoers/triggers from Lakoff (1970))

A general phonological rule in Lg1: Parasitic Backness Vowel Harmony (=VH)

```
pon-ek \rightarrow ponok

put-ek \rightarrow putek
```

VH if same height No VH if different height

1. Exceptional non-undergoer

Same height: No VH

pon- et
$$\rightarrow$$
 ponet, *ponot

Types of Exceptions: Toy Example

(Classification into undergoers/triggers from Lakoff (1970))

A general phonological rule in Lg1: Parasitic Backness Vowel Harmony (=VH)

$$pon-ek \rightarrow ponok$$

 $put-ek \rightarrow putek$

VH if same height No VH if different height

Exceptional non-undergoer
 Same height: No VH
 pon- et → ponet, *ponot

2. Exceptional non-trigger

Same height: No VH

ton −ek → tonek, *tonok

Types of Exceptions: Toy Example

(Classification into undergoers/triggers from Lakoff (1970))

A general phonological rule in Lg1: Parasitic Backness Vowel Harmony (=VH)

$$pon-ek \rightarrow ponok$$

 $put-ek \rightarrow putek$

VH if same height No VH if different height

1. Exceptional non-undergoer

Same height: No VH

pon- et
$$\rightarrow$$
 ponet, *ponot

2. Exceptional non-trigger

Same height: No VH

ton
$$-ek \rightarrow tonek, *tonok$$

3. Exceptional undergoer

Different height: VH

Types of Exceptions: Toy Example

(Classification into undergoers/triggers from Lakoff (1970))

A general phonological rule in Lg1: Parasitic Backness Vowel Harmony (=VH)

$$pon-ek \rightarrow ponok$$

 $put-ek \rightarrow putek$

VH if same height No VH if different height

- 1. Exceptional non-undergoer

 Same height: No VH
 - pon- et \rightarrow ponet, *ponot
- 3. Exceptional undergoer Different height: VH

2. Exceptional non-trigger

Same height: No VH

ton $-ek \rightarrow tonek, *tonok$

4. Exceptional trigger

Different height: VH

put -ek \rightarrow putok, *putek

Unified Account for Exceptional (Non)Undergoers and (Non)Triggers: Our Toy Example

- SH[BK] demands VH (18)a. Assign -X violation for every pair of tier-adjacent vowels V_A and V_B with different [\pm back] specifications where -X is the mean activity $\frac{A+B}{2}$.
 - SH[BK]_{HI} b. demands parasitic VH Assign -X violation for every pair of tier-adjacent vowels V_A and V_B with the same specification for [\pm high] but different [\pm back] specifications where -X is the mean activity $\frac{A+B}{2}$.
 - ID[BK] penalizes VH C. Assign -X violation for every input vowel V_X with another feature specification for $[\pm back]$.

'Regular': No VH if diff. height (19)

$p_1u_1t_1-e_1k_1$	ID[BK]	Sн[вк] _{ні}	Ѕн[вк]	
	15	10	10	
r a. p₁u₁t₁e₁k₁			-1	-10
b. p ₁ u ₁ t ₁ o ₁ k ₁	-1			-15

'Regular': No VH if diff. height (19)

$p_1u_1t_1-e_1k_1$	ID[BK]	Sн[вк] _{ні}	Ѕн[вк]	
	15	10	10	
r a. p₁u₁t₁e₁k₁			-1	-10
b. p ₁ u ₁ t ₁ o ₁ k ₁	-1			-15

'Regular': VH if same height (20)

$p_1o_1n_1-e_1k_1$	Id[BK]	Sн[вк] _{ні}	Ѕн[вк]	
	15	10	10	
a. $p_1o_1n_1e_1k_1$		-1	-1	-20
® b. p ₁ o ₁ n ₁ o ₁ k ₁	-1			-15

(21)Exceptional trigger: Stronger stem-vowel enforces VH even if different height

$k_1u_3n_1$ $-e_1k_1$	ID[BK]	Sн[вк] _{ні}	Ѕн[вк]	
	15	10	10	
a. k ₁ u ₃ n ₁ e ₁ k ₁			-2	-20
☞ b. k ₁ u ₃ n ₁ o ₁ k ₁	-1			-15

(21) Exceptional trigger:
Stronger stem-vowel enforces VH even if different height

$k_1u_3n_1 - e_1$	ζ ₁	ID[BK]	Sн[вк] _{ні}	Ѕн[вк]	
		15	10	10	
a. k ₁ u ₃	n ₁ e ₁ k ₁			-2	-20
r b. k₁u₃	n ₁ o ₁ k ₁	-1			-15

(22) Exceptional non-trigger:

Weaker stem-vowel doesn't enforce VH even if same height

$t_1 o_{0.4} n_1 - e_1 k_1$	ID[BK]	Sн[вк] _{ні}	Ѕн[вк]	
	15	10	10	
\bowtie a. $k_1 o_{0.4} I_1 e_1 k_1$		-0.7	-0.7	-14

(23)Exceptional undergoer:

Weaker affix-vowel undergoes VH even if different height

$p_1u_1t_1-e_{0.4}m_1$	ID[BK]	Sн[вк] _{ні}	Ѕн[вк]	
	15	10	10	
a. $p_1u_1t_1e_{0.4}m_1$			0.7	-7
r b. p₁u₁t₁o₀.4m₁	-0.4			-6

(23)Exceptional undergoer:

Weaker affix-vowel undergoes VH even if different height

$p_1u_1t_1-e_{0.4}m_1$	Id[BK]	Sн[вк] _{ні}	Ѕн[вк]	
	15	10	10	
a. $p_1u_1t_1e_{0.4}m_1$			0.7	-7
r b. p₁u₁t₁o₀₊₄m₁	-0.4			-6

(24)Exceptional non-undergoer:

Stronger affix-vowel resists VH even if same height

$p_1o_1n_1 - e_3t_1$	ID[BK]	Sн[вк] _{ні}	Ѕн[вк]	
	15	10	10	
\square a. $p_1o_1n_1e_3t_1$		-2	-2	-40
b. p ₁ o ₁ n ₁ e ₃ t ₁	-3			-45

Four Patterns of Exceptionality and GSRO: Summary

```
E_{1-x} (=weaker than the 'default' element E_1) can result in being an exceptional
```

- \bullet undergoer: Not as protected by faithfulness as E_1
- $\ensuremath{\triangleright}$ non-undergoer: Not inducing as much markedness violation as E_1
- non-trigger: Not inducing as much markedness violation as E₁

```
E_{1+x} (=stronger than the 'default' element E_1) can result in being an exceptional
```

- w undergoer: Inducing more markedness violation than E₁
- w non-undergoer: Protected more by faithfulness as E₁
- & trigger: Inducing more markedness violation than E₁

Four Patterns of Exceptionality: Empirical Picture

1. Exceptional non-undergoers

- some M-tones resist to undergo a dissimilation into H in Kagwe (Hyman, 2010)
- some moras are non-hosts for floating tones in San Miguel el Grande Mixtec (Pike, 1944; McKendry, 2013)
- <u>م</u>

3. Exceptional undergoers

- only some vowels undergo V-harmony in Y. Mayan (Krämer, 2003)
- only some segments are deleted to avoid a marked structure in, e.g., Nuuchahnulth or Yawelmani (Noske, 1985; Zoll, 1996)

2. Exceptional non-triggers

- some vowels do not trigger otherwise regular ATR-harmony in Classical Manchu (Smith, 2017)
- some H-tones in Molinos Mixtec don't undergo H-spreading (Hunter and Pike, 1969)
- **‱** ...

4. Exceptional triggers

- some suffixes trigger deletion of a preceding V in Yine (Pater, 2010)
- some suffixes trigger raising of a preceding low V in Assamese (Mahanta, 2012)

- 'exceptional' behaviour=activity of a phonological elements in a morpheme representation results in a gradient violation of constraint X
 - → it also results in a gradient violation of constraint Y and might result in 'exceptional' behaviour for another process

② Exceptionality for More than one Process: Extending our Toy Example

A general phonological rule in Lg2: Parasitic Backness Vowel Harmony

$$po-nek \rightarrow ponok$$

 $pu-nek \rightarrow punek$

VH if same height *No VH if different height*

Another general phonological rule in Lg2: Vowel hiatus avoidance

$$pu-ok \rightarrow pok$$

Deletion of first V

② Exceptionality for More than one Process: Extending our Toy Example

A general phonological rule in Lg2: Parasitic Backness Vowel Harmony

$$po-nek \rightarrow ponok$$

 $pu-nek \rightarrow punek$

VH if same height *No VH if different height*

Another general phonological rule in Lg2: Vowel hiatus avoidance

pu-ok
$$\rightarrow$$
 pok

Deletion of first V

1. Exceptional trigger for VH

Different height: VH

 $\frac{\mathsf{ku}}{\mathsf{nek}} \to \mathsf{kunok}, \mathsf{kunek}$

② Exceptionality for More than one Process: Extending our Toy Example

A general phonological rule in Lg2: Parasitic Backness Vowel Harmony

$$po-nek \rightarrow ponok$$

 $pu-nek \rightarrow punek$

VH if same height No VH if different height

Another general phonological rule in Lg2: Vowel hiatus avoidance

$$pu-ok \rightarrow pok$$

Deletion of first V

- 1. Exceptional trigger for VH
- Different height: VH

$$\frac{\text{ku}}{\text{-nek}} \rightarrow \text{kunok}, \text{*kunek}$$

2. Exceptional non-undergoer of VD

Vowel hiatus: No deletion

$$\frac{\mathsf{ku}}{\mathsf{ok}}$$
 -ok \rightarrow kuok, *kok

(25)'Regular': No VH if diff. height

p ₁ u ₁ -n ₁ e ₁ k ₁	*VV 28	MaxS 20	ID[вк] 15	Sн[вк] _{ні} 10	Sн[вк] 10	
r a. p ₁ u ₁ n ₁ e ₁ k ₁					-1	-10
b. p ₁ u ₁ n ₁ o ₁ k ₁			-1			-15

(26)Exceptional trigger: Stronger stem-vowel enforces VH even if different height

k_1u_3 $-n_1e_1k_1$	*VV	MaxS	ID[BK]	Sн[вк] _{ні}	Ѕн[вк]	
	28	20	15	10	10	
a. k ₁ u ₃ n ₁ e ₁ k ₁					-2	-20
☞ b. k ₁ u ₃ n ₁ o ₁ k ₁			-1			-15

Exceptionality for More than one Process: GSRO constraint

(27)*VV

> Assign -X violation for every pair of adjacent vowels V_A and V_B where -X is the mean activity $\frac{A+B}{2}$

'Regular': VD to avoid hiatus (28)

$p_1u_1-o_1k_1$	*VV	MaxS	ID[BK]	Sн[вк] _{ні}	Ѕн[вк]	
	28	20	15	10	10	
a. p ₁ u ₁ o ₁ k ₁	-1					-28
r b. p₁o₁k₁		-1				-20

(28) 'Regular': VD to avoid hiatus

$p_1u_1-o_1k_1$	*VV	MaxS	Id[BK]	Sн[вк] _{ні}	Ѕн[вк]	
	28	20	15	10	10	
a. p ₁ u ₁ o ₁ k ₁	-1					-28
r b. p₁o₁k₁		-1				-20

(29) Exceptional non-undergoer: Stronger stem-vowel resists VD

k_1u_3 $-o_1k_1$	*VV	MaxS	ID[BK]	Sн[вк] _{ні}	Ѕн[вк]	
	28	20	15	10	10	
r a. k₁u₃o₁k₁	-2					-56
b. k ₁ o ₁ k ₁		-3				-60

(30) Exceptional trigger:Stronger stem-vowel enforces VH even if different height

k_1u_3 $-n_1e_1k_1$	*VV	MaxS	ID[BK]	Sн[вк] _{ні}	Ѕн[вк]	
	28	20	15	10	10	
a. k ₁ u ₃ n ₁ e ₁ k ₁					-2	-20
☞ b. k ₁ u ₃ n ₁ o ₁ k ₁			-1			-15

(31) Exceptional non-undergoer: Stronger stem-vowel resists VD

k_1u_3 $-o_1k_1$	*VV	MaxS	ID[BK]	Sн[вк] _{ні}	Ѕн[вк]	
	28	20	15	10	10	
r a. k ₁ u ₃ o ₁ k ₁	-2					-56
b. k ₁ o ₁ k ₁		-3				-60

→ The same representation /k₁u₃/ predicts exceptional behaviour for more than one process from different gradient constraint violations

Exceptionality for More than one Process: Empirical Picture

(32) e.g. exceptional H-realization in Molinos Mixtec (Hunter and Pike, 1969; Zimmermann, 2018*a*)

	is realized	triggers spreading	undergoes spreading
H ₁	Y	Y	Y
$H_{0.8}$	O	N	Y

(33) e.g. exceptional vowel harmony in Yucatec Mayan (Krämer, 2001)

	undergoes full V-hamony	undergoes optional deletion
V ₁	N	N
$V_{0.5}$	Y	Y

→ one threshold for two processes

3 Degrees of Exceptionality

true gradience of activity=multiple thresholds for 'exceptional' behaviour within the same language for the same phonological element

3 Degrees of Exceptionality: A new toy example

Lg3 without backness harmony

$$pok-el \rightarrow pokel$$

 $pok-im \rightarrow mutel$

No parasitic VH No non-parasitic VH

3 Degrees of Exceptionality: A new toy example

Lg3 without backness harmony

```
pok-el \rightarrow pokel

pok-im \rightarrow mutel
```

No parasitic VH No non-parasitic VH

Exceptional trigger I

```
\frac{\mathsf{tom}}{\mathsf{-el}} \to \mathsf{tomol}, *\mathsf{tomel}
\frac{\mathsf{tom}}{\mathsf{-im}} \to \mathsf{tomim}, *\mathsf{tomum}
```

Triggers parasitic VH Does not trigger non-parasitic VH

3 Degrees of Exceptionality: A new toy example

Lg3 without backness harmony

$$pok-el \rightarrow pokel$$

 $pok\text{-im} \quad \to mutel$

No parasitic VH No non-parasitic VH

Exceptional trigger I

tom $-el \rightarrow tomol, *tomel$

 $\frac{\mathsf{tom}}{\mathsf{tom}}$ -im \rightarrow tomim, *tomum

Triggers parasitic VH Does not trigger non-parasitic VH

Exceptional trigger II

sop -el \rightarrow sopol, *sopel

sop –im \rightarrow sopul, *supim

Triggers parasitic VH Triggers non-parasitic VH

Degrees of Exceptionality: GSRO

(34) 'Regular': No VH if diff. height

$p_1o_1k_1-i_1m_1$	ID[BK]	Sн[вк] _{ні}	Ѕн[вк]	
	25	10	10	
r a. p ₁ o ₁ k ₁ i ₁ m ₁			-1	-10
b. p ₁ o ₁ k ₁ u ₁ m ₁	-1			-25

(35) 'Regular': No VH if same height

$p_1o_1k_1-e_1l_1$	ID[BK]	Sн[вк] _{ні}	Ѕн[вк]	
	25	10	10	
\bowtie a. $p_1o_1k_1e_1l_1$		-1	-1	-20
b. p ₁ o ₁ k ₁ o ₁ l ₁	-1			-25

Degrees of Exceptionality: GSRO

(36) Exceptional trigger I: No VH if diff. height

$t_1o_3m_1$ $-i_1m_1$	ID[BK]	Sн[вк] _{ні}	Ѕн[вк]	
	25	10	10	
\blacksquare a. $t_1o_3m_1i_1m_1$			-2	-20
b. $t_1o_3m_1u_1m_1$	-1			-25

(37) Exceptional trigger I: VH if same height

$t_1 o_3 m_1 - e_1 I_1$	ID[BK]	Sн[вк] _{ні}	Ѕн[вк]	
	25	10	10	
a. $t_1o_3m_1e_1l_1$		-2	-2	-40
1 b. t₁o₃m₁o₁l₁	-1			-25

Degrees of Exceptionality: GSRO

(38) Exceptional trigger II: VH if diff. height

$s_1o_5p_1 - i_1m_1$	ID[BK]	Sн[вк] _{ні}	Ѕн[вк]	
	25	10	10	
a. $s_1o_5p_1i_1m_1$			-3	-30
[™] b. s ₁ o ₅ p ₁ u ₁ m ₁	-1			-25

(39) Exceptional trigger II: VH if same height

s_1o_5p	$\frac{1}{1} - e_1 I_1$	ID[BK]	Sн[вк] _{ні}	Ѕн[вк]	
		25	10	10	
a.	$s_1o_5p_1e_1I_1$		-3	-3	-60
r⊛ b.	$s_1o_5p_1o_1l_1$	-1			-25

Degrees of Exceptionality: Empirical picture

(40)e.g. exceptional /ai/-repair in Finnish (cf. above) (Anttila, 2002; Pater, 2006)

	is deleted #_i3	assimilates #_i3
a ₁	Y	N
a _{0.8}	O	O
$a_{0.6}$	N	Y

(41)e.g. exceptional H-tone realization in Giphende (Hyman, 2017; Rolle, 2018)

	is realized with H in same word	is realized with adjacent H
H ₁	Y	Y
$H_{0.8}$	Y	Ν
$H_{0.6}$	N	Ν

4 Implicational Relations

if all exceptionality results from differences in activity of phonological elements, not all imaginable combinations of exceptionality patterns in a language are possible: Certain exceptionality patterns imply each other

Thresholds for Exceptionality

(42)

 E_{1+x+y} → Exceptional Behaviour X+Y STRONGER: THRESHOLD 2 E_{1+x} → Exceptional Behaviour X STRONGER: THRESHOLD 1 → 'Normal' Behaviour E_1 WEAKER: THRESHOLD 1 → Exceptional Behaviour V E_{1-v} WEAKER: THRESHOLD 1 E_{1-v-w} → Exceptional Behaviour W

Implicational Relations: GSRO and Exceptionality Patterns

(43) Implicational restriction on exceptionality patterns If a language L has more than two classes of morphemes with phonological elements that show different phonological behaviour with respect to different processes: The morpheme classes can be ordered in a way that all behaviours for a certain process form continuous blocks.

(44) Example: Excluded pattern with multiple self-reversing thresholds

	P1	Р2
Morpheme 1	A1	B1
Morpheme 2	A1	B2
Morpheme 3	A2	B2
*Morpheme 4	A2	B1

Implicational Relations: Yet Another Toy Example

Lg4 with parasitic VH and hiatus avoidance

 $\begin{array}{ll} \text{po-nek} & \rightarrow \text{ponok} \\ \text{pu-nek} & \rightarrow \text{punek} \\ \text{pu-ok} & \rightarrow \text{pok} \end{array}$

VH if same height No VH if different height Deletion of first V

Implicational Relations: Yet Another Toy Example

Lg4 with parasitic VH and hiatus avoidance

```
po-nek \rightarrow ponok
pu-nek \rightarrow punek
pu-ok \rightarrow pok
```

VH if same height No VH if different height Deletion of first V

1. Exceptional trigger for VH

 $\frac{\mathsf{ku}}{\mathsf{nek}} \to \mathsf{kunok}, *\mathsf{kunek}$

VH if different height

Implicational Relations: Yet Another Toy Example

Lg4 with parasitic VH and hiatus avoidance

```
po-nek \rightarrow ponok
pu-nek \rightarrow punek
pu-ok \rightarrow pok
```

VH if same height No VH if different height Deletion of first V

1. Exceptional trigger for VH

```
\frac{\mathsf{ku}}{\mathsf{nek}} \to \mathsf{kunok}, \mathsf{kunek}
```

VH if different height

2. Exceptional trigger for VH and non-undergoer of VD

```
pu -nek \rightarrow punok, *punek
```

$$pu$$
 -ok \rightarrow puok, *pok

VH if different height No V-deletion to avoid hiatus

Implicational Relations: Yet Another Toy Example

Lg4 with parasitic VH and hiatus avoidance

```
po-nek \rightarrow ponok
pu-nek \rightarrow punek
pu-ok \rightarrow pok
```

VH if same height No VH if different height Deletion of first V

1. Exceptional trigger for VH

```
\frac{\mathsf{ku}}{\mathsf{nek}} \to \mathsf{kunok}, \mathsf{kunek}
```

VH if different height

2. Exceptional trigger for VH and non-undergoer of VD

$$pu$$
 –nek \rightarrow punok, *punek

$$pu$$
 -ok \rightarrow puok, *pok

VH if different height No V-deletion to avoid hiatus

3. Exceptional non-undergoer of VD

$$tu$$
 -nek \rightarrow tunek, *tunok
 tu -ok \rightarrow tuok, *tok

No VH if different height Deletion of first V

- (45) 'Normal': V with activity 1
 - a. ID[BK] > SH[BK]
 - b. *HIAT > MAXS

No non-parasitic VH VD

- (45) 'Normal': V with activity 1
 - a. ID[BK] > SH[BK]
 - b. *HIAT > MAXS
- (46) Exceptionality 1: V with activity X
 - a. $X \times SH[BK] > ID[BK]$
 - b. *HIAT $> X \times MAXS$

No non-parasitic VH

VD

Non-parasitic VH

VD

- (45) 'Normal': V with activity 1
 - a. ID[BK] > SH[BK]
 - b. *Hiat > MaxS
- (46) Exceptionality 1: V with activity X
 - a. $X \times SH[BK] > ID[BK]$
 - b. *HIAT $> X \times MAXS$
- (47) Exceptionality 2: V with activity Y
 - a. $Y \times SH[BK] > ID[BK]$
 - b. $Y \times MaxS > *HIAT$

No non-parasitic VH

Non-parasitic VH

Non-parasitic VH

No VD

VD

VD

- (45) 'Normal': V with activity 1
 - a. ID[BK] > SH[BK]
 - b. *HIAT > MAXS
- (46) Exceptionality 1: V with activity X
 - a. $X \times SH[BK] > ID[BK]$
 - b. *HIAT $> X \times MAXS$
 - b. "HIAT $> X \times MAXS$
- (47) Exceptionality 2: V with activity Y
 - a. $Y \times SH[BK] > ID[BK]$
 - b. $Y \times MaxS > *HIAT$
- (48) *Exceptional 3: V with activity Z
 - a. $ID[BK] > Z \times SH[BK]$
 - b. $Z \times MaxS > *HIAT$

No non-parasitic VH

Non-parasitic VH

Non-parasitic VH

No VD

VD

VD

No non-parasitic VH
No VD

- (45) 'Normal': V with activity 1
 - a. ID[BK] > SH[BK]

b. *Hiat > MaxS

No non-parasitic VH

- (46) Exceptionality 1: V with activity X
 - a. $X \times Sh[BK] > ID[BK]$

b. *HIAT $> X \times MAXS$

Non-parasitic VH

VD

- (47) Exceptionality 2: V with activity Y
 - a. $Y \times SH[BK] > ID[BK]$

b. $Y \times MaxS > *HIAT$

Non-parasitic VH No VD

- (48) *Exceptional 3: V with activity Z
 - a. $ID[BK] > Z \times SH[BK]$

b. $Z \times MaxS > *HIAT$

No non-parasitic VH

No VD

 \rightarrow Weighting paradox (Z < X and Z > X; (46) vs. (48))

Implicational Relations: The Empirical Picture

(49)		Yine		(50)	Welsh		(51)	Finnish	
		(Lin, 1997 a,b; Pater, 2010)			(Zimmermann, 2019b)			(Anttila, 2002; Pater, 2006)	
		triggers deletion	undergoes deletion		deletion to avoid coda	realized as default		is deleted #_i3	assimilates #_i3
V	1.5	N	N	C ₁	N	Y	a ₁	Y	N
V	1	Ν	Y	$C_{0.6}$	Y	Y	a _{0.8}	О	O
V	0.5	Y	Υ	$C_{0.2}$	Y	N	a _{0.6}	Ν	Y

(52)Lexical accent competition in Moses Columbian Salish (Czaykowska-Higgins, 1985, 1993a,b, 2011; Willett, 2003; Zimmermann, 2018c)

	deleted if Ψ>0.9 present	deleted if Ψ>0.8 present	deleted if Ψ>0.6 present	deleted if Ψ>0.4 present
φ1	N	N	N	N
φ0.9	N	Ν	Ν	Y
φ0.8	N	Ν	Y	Y
φ0.6	N	Y	Υ	Y
φ _{0.4}	Y	Y	Y	Y

multiple thresholds that are never self-reversing

Implicational Relations: The Important Details

the implicational restriction crucially only holds for the same phonological elements

(53)An apparent counterexample: Self-reversing thresholds in Yucatec Mayan vowels? (Krämer, 2001)

	undergoes full VH	optionally deletes	undergoes backness dissimimi- lation	undergoes height dissimimi- lation
V in most suffixes	N	N	N	N
V in some suffixes	Y	Y	Ν	Ν
V in some other suffixes	N	Ν	Y	N
V in one suffix	N	N	N	Y

Implicational Relations: The Important Details

but the relevant constraints in Yucatec Mayan do not all refer to vowels, they in fact refer to three different phonological elements

(54) GSRO account of Yucatec Mayan

Thresh	old for *V	Veak	Threshold for OCP _{back}		
	delete	optionally copy V to fill mora		undergoes back- dissimilation	
V ₁	N	N	[±back] ₁	N	
$V_{0.5}$	Y	Y	$[\pm {\sf back}]_{0.5}$	Y	

Threshold for OCPhigh

	undergoes height- dissimilation
[±high] ₁	N
$[\pm high]_{0.5}$	Y

Alternative Accounts of Exceptionality

Lexically Indexed Constraints

(e.g. Ito and Mester, 1990; Golston and Wiese, 1996; Fukazawa, 1999; Pater, 2000; Pater and Coetzee, 2005; Pater, 2006; Flack, 2007; Pater, 2010)

constraints can exist in versions indexed to (classes of) morphemes that are only violated if the scope of the violation contains material of an indexed morpheme (Pater, 2010)

Lexically Indexed Constraints

(e.g. Ito and Mester, 1990; Golston and Wiese, 1996; Fukazawa, 1999; Pater, 2000; Pater and Coetzee, 2005; Pater, 2006; Flack, 2007; Pater, 2010)

- constraints can exist in versions indexed to (classes of) morphemes that are only violated if the scope of the violation contains material of an indexed morpheme (Pater, 2010)
- (55) Exceptional triggers and lexically indexed constraints

 The exceptional triggers are indexed to a higher-ranked markedness constraint $Sh[BK]_A$, $Sh[BK]_{HI} \gg ID[BK] \gg Sh[BK]$
- (56) Exceptional non-undergoers and lexically indexed constraints

 The exceptional non-undergoers are indexed to a higher-ranked faithfulness

 constraint

 ID[BK]_B ≫ SH[BK]_{HI} ≫ ID[BK] ≫ SH[BK]

- ${ t @}$ Unified account for (non)undergoers and (non)triggers ${ t @}$
 - → Exceptional non-triggers/undergoers are complement set of exceptional triggers/non-undergoers (=all 'non-exceptional' morphemes are indexed)

- ① Unified account for (non)undergoers and (non)triggers 😊
 - → Exceptional non-triggers/undergoers are complement set of exceptional triggers/non-undergoers (=all 'non-exceptional' morphemes are indexed)
- ② Exceptionality for more than one process
 - → Is a concidence: Morpheme (class) happens to be indexed to more than one constraint two different explanations

- ① Unified account for (non)undergoers and (non)triggers
 - → Exceptional non-triggers/undergoers are complement set of exceptional triggers/non-undergoers (=all 'non-exceptional' morphemes are indexed)
- Exceptionality for more than one process \bigcirc
 - → Is a concidence: Morpheme (class) happens to be indexed to more than one constraint - two different explanations
- Degrees of exceptionality ©
 - → Fall out from more indexed versions of the same constraint(s)

① Unified account for (non)undergoers and (non)triggers ②

- → Exceptional non-triggers/undergoers are complement set of exceptional triggers/non-undergoers (=all 'non-exceptional' morphemes are indexed)
- Exceptionality for more than one process (3)
 - → Is a concidence: Morpheme (class) happens to be indexed to more than one constraint - two different explanations
- Degrees of exceptionality ©
 - → Fall out from more indexed versions of the same constraint(s)
- Implicational restrictions between exceptionality patterns

→ Don't exist e.g. $MaxS_{B.~C}$, $Sh[BK]_{A.~B}$, $Sh[BK]_{HI} \gg ID[BK]$, *VV $\gg Sh[BK]$, MaxS

Autosegmental Defectivity

(e.g. Lieber, 1992; Stonham, 1994; Saba Kirchner, 2010; Trommer, 2011; Bermúdez-Otero, 2012; Bye and Svenonius, 2012; Trommer and Zimmermann, 2014; Zimmermann, 2017c)

worphemes can be underspecified or overspecified: Floating features/moras/tones, lack of features/moras/tones,...

Autosegmental Defectivity

(e.g. Lieber, 1992; Stonham, 1994; Saba Kirchner, 2010; Trommer, 2011; Bermúdez-Otero, 2012; Bye and Svenonius, 2012; Trommer and Zimmermann, 2014; Zimmermann, 2017c)

- worphemes can be underspecified or overspecified: Floating features/moras/tones, lack of features/moras/tones,...
- (57)Exceptional undergoers: Morphemes contain underspecified elements and need specification/escape faithfulness
- (58)Exceptional triggers: Morphemes contain floating/unassociated features, moras, tones that need association
- (59)Exceptional non-undergoers: Morphemes contain underspecified elements and lack the element a constraint/process refers to or they contain additional material that makes them prone to more faithfulness
- (60)Exceptional non-triggers: Morphemes contain underspecified elements and lack the element a constraint/process refers to

Unified account for (non)undergoers and (non)triggers

Unified account for (non)undergoers and (non)triggers

Exceptionality for more than one process

Unified account for (non)undergoers and (non)triggers

- Exceptionality for more than one process
 - Exceptionality is a consequence from contrastive representations
- Degrees of exceptionality (2)
 - → Severely limited by number of contrasting elements that can be lacking/floating

- ① Unified account for (non)undergoers and (non)triggers ②
- ② Exceptionality for more than one process ①
 - → Exceptionality is a consequence from contrastive representations
- 3 Degrees of exceptionality
 - → Severely limited by number of contrasting elements that can be lacking/floating
- 4 Implicational restrictions between exceptionality patterns
 - → Don't exist; different representational properties (underspecification, floating elements) can freely be combined

Comparison: Three Accounts of Exceptionality

(61)

	LIC	ASD	GSRO
① 4 patterns		(C)	(C)
② More than one process			
3 Degrees of exceptionality			
4 Implicational restrictions	(Ξ)	\odot	(3)

Summary

Summary

- the assumption of gradient activity in the output predicts the typology of phonological exceptions from gradient faithfulness and markedness violations
- four properties of exceptionality patterns easily fall out that are hard to capture under alternative accounts of exceptionality

References

- Amato, Irene (2018), 'A gradient view of Raddoppiamento Fonosintattico', ms., University of Leipzig.
- Anttila, Arto (2002), 'Morphologically conditioned phonological alternations', *Natural Language and Linguistic Theory* **20**, 1–42.
- Bermúdez-Otero, Ricardo (2012), The architecture of grammar and the division of labour in exponence, in J.Trommer, ed., 'The morphology and phonology of exponence: The state of the art', Oxford University Press, Oxford, pp. 8–83.
- Braver, Aaron (2013), Degrees of incompleteness in neutralization: Paradigm uniformity in a phonetics with weighted constraints, PhD thesis, Rutgers The State University of New Jersey-New Brunswick.
- Bye, Patrick and Peter Svenonius (2012), Non-concatenative morphology as epiphenomenon, *in* J.Trommer, ed., 'The morphology and phonology of exponence: The state of the art', Oxford University Press, Oxford, pp. 426–495.
- Corina, David P. (1994), The induction of prosodic constraints, in S. D.Lima, R.Corrigan and G.Iverson, eds, 'The Reality of Linguistic Rules', John Benjamins, pp. 115–145.
- Czaykowska-Higgins, Ewa (1985), 'Predicting stress in Columbian Salish', ICSNL 20.
- Czaykowska-Higgins, Ewa (1993a), 'Cyclicity and stress in Moses-Columbia Salish (Nxa'amxcin)', Natural Language and Linguistic Theory 11, 197-278.
- Czaykowska-Higgins, Ewa (1993b), The phonology and semantics of CVC reduplication in Moses-Columbian Salish, *in* A.Mattina and T.Montler, eds, 'American Indian Linguistics and ethnography in honor of Laurence C. Thompson', UMOPL, pp. 47–72.
- Czaykowska-Higgins, Ewa (2011), The morphological and phonological constituent structure of words in Moses-Columbia Salish (Nxa?amxcín), *in* E.Czaykowska-Higgins and M. D.Kinkade, eds, 'Salish Languages and Linguistics: Theoretical and Descriptive Perspectives', de Gruyter Mouton, Berlin, Boston, pp. 153–196.

- Faust, Noam and Paul Smolensky (2017), 'Activity as an alternative to autosegmental association', talk given at mfm 25, 27th May, 2017.
- Flack, Kathryn (2007), 'Templatic morphology and indexed markedness constraints', *Linguistic Inquiry* **38**, 749–758.
- Fukazawa, Haruka (1999), Theoretical implications of OCP effects in feature in optimality theory, PhD thesis, University of Maryland at College Park.
- Garde, Paul (1965), 'Accentuation et morphologie', La Linguistique 1, 25-39.
- Goldwater, Sharon and Mark Johnson (2003), Learning ot constraint rankings using a maximum entropy model, *in J.*Spenader, A.Eriksson and O.Dahl, eds, 'Proceedings of the Workshop on Variation within Optimality Theory', Stockholm University, Stockholm, pp. 111–120.
- Golston, Chris and Richard Wiese (1996), 'Zero morphology and constraint interaction: subtraction and epenthesis in German dialects', *Yearbook of Morphology 1995* pp. 143–159.
- Hayes, Bruce (2009), 'Manual for maxent grammar tool', online available at http://linguistics.ucla.edu/people/hayes/MaxentGrammarTool/ManualForMaxentGrammarTool.pdf.
- Hunter, Georgia and Eunice Pike (1969), 'The phonology and tone sandhi of Molinos Mixtec', *Linguistics* .
- Hyman, Larry (1985), A theory of phonological weight, Foris Publications, Dordrecht.
- Hyman, Larry M. (2010), Do tones have features?, in J. G.et al., ed., 'Tones and Features (Clements memorial volume)', de Gruyter, Berlin, pp. 50–80.
- Hyman, Larry M. (2017), Disentangling conjoint, disjoint, metatony, tone cases, augments, prosody and focus in bantu, *in* J.van der Wal and L.Hyman, eds, 'The Conjoint/Disjoint Alternation in Bantu', Mouton de Gruyter, Berlin.
- Inkelas, Sharon (2015), Confidence scales: A new approach to derived environment effects, *in* Y. E.Hsiao and L.-H.Wee, eds, 'Capturing Phonological Shades Within and Across Languages', Cambridge Scholars Publishing, Newcastle upon Tyne, pp. 45–75.

- Ito, Junko and Armin Mester (1990), The structure of the phonological lexicon, *in* N.Tsujimura, ed., 'The Handbook of Japanese Linguistics', Blackwell, Malden, pp. 62–100.
- Jang, Hayeun (2019), 'Emergent phonological gradience from articulatory synergies: simulations of coronal palatalization', talk, presented at the LSA 2019, New York, January 05, 2019.
- Johnson, Mark (2002), Optimality-theoretic lexical functional grammar, in S.Stevenson and P.Merlo, eds, 'The Lexical Basis of Sentence Processing: Formal, Computational and Experimental Issues', John Benjamins, Amsterdam, pp. 59–73.
- Kenstowicz, Michael and Jerzy Rubach (1987), 'The phonology of syllabic nuclei in Slovak', *Language* **63**, 463–497.
- Koster, Jan (1986), 'The relation between pro-drop, scrambling, and verb movements', Ms., Rijksuniversiteit Groningen.
- Krämer, Martin (2001), 'Yucatec Maya vowel alternations harmony as syntagmatic identity', Zeitschrift für Sprachwissenschaft 20, 175–217.
- Krämer, Martin (2003), Vowel Harmony and Correspondence Theory, Mouton de Gruyter.
- Kushnir, Yuriy (2017), 'Accent strength in Lithuanian', talk, given at the workshop on Strength in Grammar, Leipzig, November 12, 2017.
- Lakoff, George (1970), Irregularity in Syntax, Holt, Rinehart and Winston.
- Legendre, Geraldine, Yoshiro Miyata and Paul Smolensky (1990), 'Harmonic grammar a formal multi-level connectionist theory of linguistic well-formedness: Theoretical foundations', *Proceedings of the 12th annual conference of the cognitive science society* pp. 388–395.
- Lieber, Rochelle (1992), Deconstructing Morphology, Chicago: University of Chicago Press.
- Lin, Yen-Hwei (1997a), Cyclic and noncyclic affixation in Piro, *in* G.Booij and J.van de Weijer, eds, 'Phonology in progress – progress in phonology', Holland Academic Graphics, The Hague, pp. 167–188.

- Lin, Yen-Hwei (1997b), 'Syllabic and moraic structures in Piro', *Phonology* 14, 403–436.
- Mahanta, Shakuntala (2012), 'Locality in exceptions and derived environments in vowel harmony', Natural Language and Linguistic Theory 30, 1109–1146.
- McCollum, Adam (2018), 'Gradient morphophonology: Evidence from Uyghur vowel harmony', talk at AMP 2018, San Diego, October 06, 2018.
- McKendry, Inga (2013), Tonal Association, Prominence and Prosodic Structure in South-Eastern Nochixtlán Mixtec, PhD thesis, University of Edinburgh.
- Nformi, Jude and Sören Worbs (2017), 'Gradient tones obviate floating features in Oku tone sandhi', talk at the Workshop on Strength in Grammar, Leipzig, November 10, 2017.
- Noske, Roland (1985), Syllabification and syllable changing processes in Yawelmani, *in* H.van der Hulst and N.Smith, eds, 'Advances in Nonlinear Phonology', Foris, pp. 335–361.
- Pater, Joe (2000), 'Nonuniformity in English stress: the role of ranked and lexically specific constraints', *Phonology* **17**(2), 237–274.
- Pater, Joe (2006), The locus of exceptionality: Morpheme-specific phonology as constraint indexation, *in* L.Bateman, M.O'Keefe, E.Reilly and A.Werle, eds, 'Papers in Optimality Theory III', GLSA, Amherst, MA, pp. 259–296.
- Pater, Joe (2010), Morpheme-specific phonology: Constraint indexation and inconsistency resolution, in S.Parker, ed., 'Phonological Argumentation: Essays on Evidence and Motivation', Equinox, London, pp. 123–154.
- Pater, Joe and Andries Coetzee (2005), 'Lexically specific constraints: gradience, learnability, and perception', *Proceedings of the 3rd Seoul International Conference on Phonology* pp. 85–119.
- Pike, Kenneth L. (1944), 'Analysis of a Mixteco text', *International Journal of American Linguistics* **10**, 113–138.

- Potts, Christopher, Joe Pater, Karen Jesney, Rajesh Bhatt and Michael Becker (2010), 'Harmonic grammar with linear programming: From linear systems to linguistic typology', *Phonology* pp. 77–117.
- Rizzi, Luigi (1986), 'Null objects in Italian and the theory of pro', Linguistic Inquiry 17, 501-57.
- Rolle, Nicholas (2018), Grammatical Tone: Typology and Theory, PhD thesis, UC Berkeley.
- Rosen, Eric (2016), Predicting the unpredictable: Capturing the apparent semi-regularity of rendaku voicing in Japanese through Harmonic Grammar, *in* E.Clem, V.Dawson, A.Shen, A. H.Skilton, G.Bacon, A.Cheng and E. H.Maier, eds, 'Proceedings of BLS 42', Berkeley Linguistic Society, Berkeley, pp. 235–249.
- Rosen, Eric (2018), 'Evidence for gradient input features from Sino-Japanese compound accent', poster, presented at AMP 2018, San Diego, October 06, 2018.
- Saba Kirchner, Jesse (2010), Minimal Reduplication, PhD thesis, UC Santa Cruz.
- Sande, Hannah (2017), Distributing morphologically conditioned phonology: Three case studies from Guébie, PhD thesis, University of California, Berkeley.
- Sloan, Kelly Dawn (1991), Syllables and Templates: Evidence from Southern Sierra Miwok, PhD thesis, MIT.
- Smith, Caitlin (2017), 'Harmony triggering as a contrastive property of segments', *Proceedings of AMP 2016*.
- Smolensky, Paul and Matthew Goldrick (2016), 'Gradient symbolic representations in grammar: The case of French liaison', Ms, Johns Hopkins University and Northwestern University, ROA 1286.
- Stonham, John (1994), Combinatorial morphology, John Benjamin, Amsterdam.

- Tranel, Bernard (1996), Exceptionality in Optimality Theory and final consonants in French, in K.Zagona, ed., 'Grammatical Theory and Romance Languages: Selected papers from the 25th Linguistic Symposium on Romance Languages (LSRL XXV)', John Benjamins, Amsterdam, pp. 275–291.
- Trommer, Jochen (2011), 'Phonological aspects of Western Nilotic mutation morphology', Habilitation, Leipzig University.
- Trommer, Jochen (2018), 'The layered phonology of Levantine Arabic syncope', talk at the Workshop on Cyclic Optimization, Leipzig, May 18, 2018.
- Trommer, Jochen and Eva Zimmermann (2014), 'Generalised mora affixation and quantity-manipulating morphology', *Phonology* **31**, 463–510.
- Trommer, Jochen and Eva Zimmermann (2018), 'The strength and weakness of tone: A new account to tonal exceptions and tone representations', invited talk, given at the Phorum, UC Berkeley, March 19, 2018.
- Vaxman, Alexandre (2016a), Diacritic weight in the extended accent first theory, in 'University of Pennsylvania Working Papers in Linguistics', University of Pennsylvania.
- Vaxman, Alexandre (2016b), How to Beat without Feet: Weight Scales and Parameter Dependencies in the Computation of Word Accent, PhD thesis, University of Connecticut.
- Walker, Rachel (2019), 'Gradient feature activation and the special status of coronals', talks, presented at P Φ F 2019, April 05, 2019.
- Willett, Marie Louise (2003), A grammatical sketch of Nxa'amxcin (Moses-Columbia Salish), PhD thesis, University of Victoria.
- Wilson, Colin (2006), 'Learning phonology with substantive bias: An experimental and computational study of velar palatalization', *Cognitive Science* **30**, 945–982.

- Yearley, Jennifer (1995), Jer vowels in Russian, in J.Beckman, L.Walsh Dickey and S.Urbanczyk, eds, 'Papers in Optimality Theory', GLSA Publications, Amherst, Mass., pp. 533–571.
- Zimmermann, Eva (2017*a*), 'Being exceptional is being weak: tonal exceptions in San Miguel el Grande Mixtec', poster, presented at AMP 2017, New York, September 16, 2017.
- Zimmermann, Eva (2017b), 'Gradient symbols and gradient markedness: a case study from Mixtec tones', talk, given at the 25th mfm, 27th May, 2017.
- Zimmermann, Eva (2017c), Morphological Length and Prosodically Defective Morphemes, Oxford University Press, Oxford.
- Zimmermann, Eva (2018a), 'Exceptional non-triggers are weak: The case of Molinos Mixtec', talk at OCP 15, January 13, 2018.
- Zimmermann, Eva (2018b), 'Gradient symbolic representations and the typology of ghost segments: An argument from gradient markedness', talk, given at AMP 2018, San Diego, October 06, 2018.
- Zimmermann, Eva (2018c), Gradient symbolic representations in the output: A case study from Moses Columbian Salishan stress, in S.Hucklebridge and M.Nelson, eds, 'Proceedings of NELS 48', pp. 275–284.
- Zimmermann, Eva (2019a), 'Faded copies: Reduplication as sharing of activity', talk, to be given at OCP 16.
- Zimmermann, Eva (2019b), Gradient symbolic representations and the typology of ghost segments, in K.Hout, A.Mai, A.McCollum, S.Rose and M.Zaslansky, eds, 'Proceedings of AMP 2018', LSA, https://doi.org/10.3765/amp.
- Zoll, Cheryl (1996), Parsing below the segment in a constraint-based framework, PhD thesis, UC Berkeley.

Eva.Zimmermann@uni-leipzig.de

Appendix: GSRO and true gradience

- & no inherent restriction on gradient contrasts within a language
 - 3 types of segments in Welsh:

$$/k_{1.0}/ - /r_{0.6}/ - /g_{0.2}/$$

3 types of association lines in Oku (Trommer and Zimmermann, 2018): $/H_{-1.0}$ • / - /H_{-0.6} • / - /H_{-0.4} • /

- ◆ 4 (derived) segment types in Levantine Arabic (Trommer, 2018): $\frac{1}{10.7} \frac{1}{10.6} \frac{1}{10.5} \frac{1}{10.3}$
- **⋄** 5 types of feet in Moses Columbian Salish (Zimmermann, 2018*c*): $/\phi_{1.0}/-/\phi_{0.9}/-/\phi_{0.8}/-/\phi_{0.6}/-/\phi_{0.4}/$

& vs. alternatives

- most accounts based on autosegmental defectivity that only allow a binary distinction into [±defective] (e.g. Hyman, 1985; Noske, 1985; Kenstowicz and Rubach, 1987; Sloan, 1991; Yearley, 1995; Tranel, 1996; Zoll, 1996)
- accounts that adopt 'strength' as a binary division (Inkelas, 2015; Vaxman, 2016a,b; Sande, 2017)

Open Question: The source for strength in GSR

- & lexical contrast for phonological elements
- lexical contrast for whole morphemes (Faust and Smolensky, 2017)
- **derived** in the phonology:
 - 'Gradient representations can mature or decay across layers' (Trommer, 2018)
 - stress strengthens elements (Faust and Smolensky, 2017; Amato, 2018; Trommer, 2018)
 - floating strength strengthens elements (Amato, 2018)
 - fission is weakening/distribution of activity (Zimmermann, 2019a)
 - certain features have an inherent strength and feature change thus implies strength adjustment (Walker, 2019)

Finnish: Actual Constraint weights calculated with the UCLA Maxent Grammar Tool (Hayes, 2009)

- (62) a. Max[HI] =4.959766016953511
 - b. *Weak =4.146982826416971
 - c. Max[LW] = 3.738127939601154
 - d. *ai = 1.6518845656104975
 - e. MaxV = 1.0367529078026307
 - f. *Strong =0.01389397830012214