Gradient activity results in gradient markedness: A representational account of phonological exceptions

(Extended slides to accompany the virtual poster presentation)

(Virtual) GLOW 43

April 8th-20th, 2020 Humboldt-Universität zu Berlin

Eva Zimmermann

UNIVERSITÄT LEIPZIG

- The assumption of Gradient Symbolic Representations that phonological elements can have different degrees of activation allows a unified explanation for patterns of exceptions.
- This representational explanation for different phonological behaviour dispenses with true 'exceptionality': A single phonological grammar and contrasting underlying representations.
- & Four predictions set this account apart from alternatives:
 - ① Unified account for (non)undergoers and (non)triggers.
 - ² Exceptionality for more than one process.
 - ③ Degrees of exceptionality.
 - ④ Implicational restrictions between exceptionality patterns.

- 1. Proposal
- 1.1 Gradient Symbolic Representation in Input/Output
- 1.2 Illustrating Four Predictions of the Model
- 2. Case studies
- 2.1 Exceptional H-tones in San Pedro Molinos Mixtec
- 2.2 Exceptional vowels in Finnish
- 3. Alternative Accounts of Exceptionality
- 4. Summary

Proposal

Gradient Symbolic Representation in Input/Output

Gradient Symbolic Representation in Input/Output (=GSRO)

- all linguistic symbols have activity that can gradiently differ and 1 is the default activity (Smolensky and Goldrick, 2016; Rosen, 2016)
- any change in activity is a faithfulness violation different activities result in gradient violations of faithfulness
- elements can be gradiently active in the output and thus violate markedness constraints gradiently

(Zimmermann, 2017*a*,*b*; Faust and Smolensky, 2017; Jang, 2019; Walker, 2019)

grammatical computation modeled inside Harmonic Grammar where constraints are weighted (Legendre et al., 1990; Potts et al., 2010)

GSRO: Gradient Constraint Violations

- constraints are violated/satisfied relative to the activity of the relevant elements
- 🗞 elements preferably have the default activity of 1 (=*WEAK, *STRONG)
- \sim e.g. the underlyingly weakly active segment in (1)
 - is easier to delete than a fully active segment
 - is costly to realize
 - tolerates more marked structures
- (1) Gradient activity=gradient constraint violations

b ₁ a	₁ t ₁ -p _{0.5}	*₩еак	MaxS	DepS	*CC		
		10	10	10	10		
a.	b ₁ a ₁ t ₁ p ₁			-0.5	-1	-15	Only fully active S
b.	$b_1a_1t_1p_{0.5}$	-0.5			-0.75	-12.5	Faithful realization of weak S
с.	b ₁ a ₁ p _{0.5}	-0.5	-1			-15	Deletion of fully active S
I® d.	b ₁ a ₁ t ₁		-0.5			-5	Deletion of weakly active S

GSRO and Exceptions

 if the underlying representation of two morphemes in a language contain identical phonological elements with different degrees of activity, they might show different phonological behaviour (=one is described as 'exception')

→ 'exceptions' in GSRO = contrastive underlying representations

Gradient Symbolic Representations: Broader Context

that linguistic elements are not categorical but have strength differences is not a new idea

(e.g. Rizzi (1986) and Koster (1986) for functional categories in syntax, Garde (1965): some lexical accent system are based on scalar grades of accent strength,...)

- other work on non-categorical elements in neural networks
 (e.g. Corina (1994) on induction of prosodic categories in neural networks)
- a can also predict **phonetic gradience**

(e.g. subphonemic gradience in word-final devoicing, nasal place assimilation, flapping (e.g. Braver, 2013), vowel harmony is gradient (McCollum, 2018),...)

- **different from a binary** distinction into strong/weak (Inkelas, 2015; Vaxman, 2016*a,b*; Sande, 2017)
- here: predictions of gradient (=numerical) phonological strength in an OT-system as explanation for 'exceptional' behaviour

General Arguments for GSR(O)

1. Embedded in a general **computational architecture for cognition** (=Gradient Symbolic Computation, Smolensky and Goldrick, 2016)

2. A unified account for different exceptional phonological behaviours:

- liaison consonants in French (Smolensky and Goldrick, 2016)
- 𝕒 semi-regularity of voicing in Japanese Rendaku (Rosen, 2016)
- allomorphy in Modern Hebrew (Faust and Smolensky, 2017)
- lexical accent in Lithuanian (Kushnir, 2017)
- I tone sandhi in Oku (Nformi and Worbs, 2017)
- tone allomorphy in San Miguel el Grande Mixtec (Zimmermann, 2017*a*,*b*)
- 𝕒 lexical stress in Moses Columbian Salishan (Zimmermann, 2018d)
- exceptional tone (non)spreading in San Molinos Mixtec (Zimmermann, 2018b)
- 𝕒 interaction of phonological/lexical gemination/lenition in Italian (Amato, 2018)
- (interacting) ghost segments in Welsh (Zimmermann, 2018c)
- ٠..

Illustrating Four Predictions of the Model

GSRO: Four Predictions = Four Arguments

- ① A unified account for exceptional (non)undergoers and (non)triggers.
- ² Elements can be exceptional for more than one process.
- ③ There can be different degrees of exceptionality (for the same process within a language).
- ④ Exceptionality patterns within one language underlie implicational restrictions.

① Types of Exceptions: Toy Example

(Classification into undergoers/triggers from Lakoff (1970))

A general phonological rule in Lg1: Parasitic Backness Vowel Harmony

pon-ek	ightarrow ponok	VH if same height
put-ek	ightarrow putek	No VH if different height

1. Exceptional non-undergoer Same height: No VH pon- et → ponet, *ponot

3. Exceptional undergoer *Different height: VH*

put– em \rightarrow putom, *putem

2. Exceptional non-trigger *Same height: No VH*

ton $-ek \rightarrow tonek$, *tonok

4. Exceptional trigger Different height: VH put $-ek \rightarrow putok$, *putek

① Unified Account for Exceptional (Non)Undergoers and (Non)Triggers: Our Toy Example

(2) a. Max[вк]

Assign -X violation for every input feature $[back]_X$ without an output correspondent.

b. Sн[вк]

Assign -X violation for every pair of tier-adjacent vowels V_A and V_B with different [\pm back] specifications where -X is the mean activity $\frac{A+B}{2}$.

с. Sh[вк]_{ні}

Assign -X violation for every pair of tier-adjacent vowels V_A and V_B with the same specification for [±high] but different [±back] specifications where -X is the mean activity $\frac{A+B}{2}$.

① Toy Example: Four Patterns of Exceptionality in GSRO

(3) 'Regular': No VH if diff. height

$p_1u_1t_1-e_1k_1$	Мах[вк] 15	Sн[вк] _{ні} 10	Sн[вк] 10	
\mathbb{S} a. $p_1u_1t_1e_1k_1$			-1	-10
b. p ₁ u ₁ t ₁ o ₁ k ₁	-1			-15

(4) 'Regular': VH if same height

$p_1o_1n_1-e_1k_1$	Мах[вк]	Sh[вк] _{ні}	Sh[вк]	
	15	10	10	
a. $p_1o_1n_1e_1k_1$		-1	-1	-20
r≊ b. p₁o₁n₁o₁k₁	-1			-15

① Toy Example: Four Patterns of Exceptionality in GSRO

(5) Exceptional trigger: Stronger stem-vowel enforces VH even if different height

$k_1u_3n_1 - e_1k_1$	Мах[вк]	Sh[вк] _{ні}	Ѕн[вк]	
	15	10	10	
a. $k_1u_3n_1e_1k_1$			-2	-20
r≊ b. k₁u₃n₁o₁k₁	-1			-15

(6) Exceptional non-trigger:

Weaker stem-vowel doesn't enforce VH even if same height

$t_1 o_{0.4} n_1 - e_1 k_1$	Мах[вк]	Sh[вк] _{ні}	Ѕн[вк]	
	15	10	10	
\mathbb{R} a. $k_1 o_{0.4} I_1 e_1 k_1$		-0.7	-0.7	-14
b. $k_1 o_{0.4} I_1 o_1 k_1$	-1			-15

① Toy Example: Four Patterns of Exceptionality in GSRO

(7) Exceptional undergoer:Weaker affix-vowel¹undergoes VH even if different height

$p_1u_1t_1 - e_{0.4}m_1$	Мах[вк]	Sh[вк] _{ні}	Ѕн[вк]	
	15	10	10	
a. $p_1u_1t_1e_{0.4}m_1$			0.7	-7
$rest b. p_1 u_1 t_1 o_{0.4} m_1$	-0.4			-6

¹ Abbreviation: The feature [-back] is weak, not the segment.

(8) Exceptional non-undergoer:Stronger affix-vowel resists VH even if same height

$p_1o_1n_1 - e_3t_1$	Мах[вк]	Sh[вк] _{ні}	Ѕн[вк]	
	15	10	10	
\mathbb{R} a. $p_1o_1n_1e_3t_1$		-2	-2	-40
b. $p_1o_1n_1e_3t_1$	-3			-45

① Four Patterns of Exceptionality and GSRO: Summary

 E_{1-x} (=weaker than the 'default' element E_1) can result in being an exceptional

- \mathcal{L} undergoer: Not as protected by faithfulness as E_1
- $\boldsymbol{\mathfrak{F}}$ non-undergoer: Not inducing as much markedness violation as E_1
- \sim non-trigger: Not inducing as much markedness violation as E₁

E_{1+x} (=stronger than the 'default' element E_1) can result in being an exceptional

- $\boldsymbol{\mathfrak{F}}$ undergoer: Inducing more markedness violation than E_1
- $\boldsymbol{\mathfrak{F}}$ non-undergoer: Protected more by faithfulness as E_1
- \mathcal{L} trigger: Inducing more markedness violation than E_1

① Four Patterns of Exceptionality: Empirical Picture

1. Exceptional non-undergoers

- Some M-tones resist to undergo a dissimilation into H in Kagwe (Hyman, 2010)
- Some moras are non-hosts for floating tones in San Miguel el Grande Mixtec (Pike, 1944; McKendry, 2013)

3. Exceptional undergoers

æ ...

°& ...

- only some vowels undergo V-harmony in Y. Mayan (Krämer, 2003)
- only some segments are deleted to avoid a marked structure in, e.g., Nuuchahnulth or Yawelmani (Noske, 1985; Zoll, 1996)

2. Exceptional non-triggers

- some vowels do not trigger otherwise regular ATR-harmony in Classical Manchu (Smith, 2017)
- Some H-tones in Molinos Mixtec don't undergo H-spreading (Hunter and Pike, 1969)

۰۰۰ 🔊

°a⊾ ...

4. Exceptional triggers

- some suffixes trigger deletion of a preceding V in Yine (Pater, 2010)
- some suffixes trigger raising of a preceding low V in Assamese (Mahanta, 2012)

⁽²⁾ Exceptionality for More than one Process

- 'exceptional' behaviour=activity of a phonological elements in a morpheme representation results in a gradient violation of constraint X
- it also results in a gradient violation of constraint Y and might result in 'exceptional' behaviour for another process

⁽²⁾ Exceptionality for More than one Process: Extending our Toy Example

A general phonological rule in Lg2: Parasitic Backness Vowel Harmony

po-nek	ightarrow ponok	VH if same height
pu-nek	ightarrow punek	No VH if different height

Another general phonological rule in Lg2: Vowel hiatus avoidance

pu-ok \rightarrow pok

Deletion of first V

1. Exceptional trigger for VH

Different height: VH <mark>ku</mark>−nek → kunok, *kunek

2. Exceptional non-undergoer of VD

Vowel hiatus: No deletion <mark>ku</mark>−ok → kuok, *kok

⁽²⁾ Exceptionality for More than one Process: GSRO

(9) 'Regular': No VH if diff. height

p ₁ u ₁ -n ₁ e ₁ k ₁	*VV 28	MaxS 20	Мах[вк] 15	Sн[вк] _{ні} 10	Sн[вк] 10	
I™ a. p1u1n1e1k1					-1	-10
b. p1u1n101k1			-1			-15

(10) Exceptional trigger:

Stronger stem-vowel enforces VH even if different height

k_1u_3 $-n_1e_1k_1$	*VV	MaxS	Мах[вк]	Sh[вк] _{ні}	Ѕн[вк]	
	28	20	15	10	10	
a. $k_1u_3n_1e_1k_1$					-2	-20
r≊ b. k₁u₃n₁o₁k₁			-1			-15

⁽²⁾ Exceptionality for More than one Process: GSRO

(11) 'Regular': VD to avoid hiatus

$p_1u_1-o_1k_1$	*VV 28	MaxS 20	Мах[вк] 15	Sн[вк] _{ні} 10	Sн[вк] 10	
a. $p_1u_1o_1k_1$	-1					-28
r≊ b. p₁o₁k₁		-1				-20

(12) Exceptional non-undergoer: Stronger stem-vowel resists VD

$k_1u_3 - o_1$	k ₁	*VV	MaxS	Мах[вк]	Sh[вк] _{ні}	Ѕн[вк]	
		28	20	15	10	10	
r≊a. k ₁	u ₃ o ₁ k ₁	-2					-56
b. k ₁	o1k1		-3				-60

⁽²⁾ Exceptionality for More than one Process: GSRO

(13) Exceptional trigger:

Stronger stem-vowel enforces VH even if different height

k_1u_3 -n ₁ e ₁ k ₁	*VV	MaxS	Мах[вк]	Sh[вк] _{ні}	Ѕн[вк]	
	28	20	15	10	10	
a. $k_1u_3n_1e_1k_1$					-2	-20
r≊ b. k₁u₃n₁o₁k₁			-1			-15

(14) Exceptional non-undergoer: Stronger stem-vowel resists VD

k1u3 -01k1	*VV 28	MaxS 20	Мах[вк] 15	Sн[вк] _{ні} 10	Sн[вк] 10	
r≊a. k ₁ u ₃ 01k ₁	-2					-56
b. k ₁ 0 ₁ k ₁		-3				-60

→ The same representation /k₁u₃/ predicts exceptional behaviour for more than one process from different gradient constraint violations

² Exceptionality for More than one Process: Empirical Picture

(15) e.g. exceptional H-realization in Molinos Mixtec (cf. below) (Hunter and Pike, 1969; Zimmermann, 2018b)

	is realized	triggers spreading	undergoes spreading
H_1	Y	Y	Y
$H_{0.8}$	0	N	Y

(16) e.g. exceptional vowel harmony in Yucatec Mayan (Krämer, 2001)

	undergoes full V-hamony	undergoes optional deletion
V1	N	Ν
$V_{0.5}$	Y	Y

→ one threshold for two processes

③ Degrees of Exceptionality

 true gradience of activity=multiple thresholds for 'exceptional' behaviour within the same language for the same phonological element

^③ Degrees of Exceptionality: A new toy example

Lg3 without backness harmony pok-el \rightarrow pokel pok-im \rightarrow mutel

Exceptional trigger I

tom –el	ightarrow tomol, *tomel
tom –im	ightarrow tomim, *tomum

Triggers parasitic VH Does not trigger non-parasitic VH

Exceptional trigger II

sop −el → sopol, *sopel sop −im → sopul, *supim Triggers parasitic VH Triggers non-parasitic VH

No parasitic VH

No non-parasitic VH

③ Degrees of Exceptionality: GSRO

(17) 'Regular': No VH if diff. height

$p_1o_1k_1-i_1m_1$	Мах[вк]	Sh[вк] _{ні}	Ѕн[вк]	
	25	10	10	
r≊a. p₁o₁k₁i₁m₁			-1	-10
b. $p_1o_1k_1u_1m_1$	-1			-25

(18) 'Regular': No VH if same height

$p_1o_1k_1-e_1l_1$	Мах[вк]	Sн[вк] _{ні}	Ѕн[вк]	
	25	10	10	
r≊ a. p101k1e1l1		-1	-1	-20
b. $p_1 o_1 k_1 o_1 l_1$	-1			-25

③ Degrees of Exceptionality: GSRO

(19) Exceptional trigger I: No VH if diff. height

$\frac{t_1o_3m_1}{t_1o_3m_1}$ – i_1m_1	Мах[вк]	Sh[вк] _{ні}	Sн[вк]	
	25	10	10	
r≊ a. t ₁ o ₃ m ₁ i ₁ m ₁			-2	-20
b. $t_1 o_3 m_1 u_1 m_1$	-1			-25

(20) Exceptional trigger I: VH if same height

$\frac{t_1o_3m_1}{t_1o_3m_1}-e_1l_1$	Мах[вк]	Sн[вк] _{ні}	Ѕн[вк]	
	25	10	10	
a. $t_1o_3m_1e_1l_1$		-2	-2	-40
IS b. t₁o₃m₁o₁l₁	-1			-25

③ Degrees of Exceptionality: GSRO

(21) Exceptional trigger II: VH if diff. height

$s_1 o_5 p_1 - i_1 m_1$	Мах[вк]	Sh[вк] _{ні}	Ѕн[вк]	
	25	10	10	
a. $s_1 o_5 p_1 i_1 m_1$			-3	-30
r≊ b. s ₁ o ₅ p ₁ u ₁ m ₁	-1			-25

(22) Exceptional trigger II: VH if same height

$s_1o_5p_1 - e_1I_1$	Мах[вк]	Sh[вк] _{ні}	Ѕн[вк]	
	25	10	10	
a. $s_1o_5p_1e_1I_1$		-3	-3	-60
$\blacksquare b. s_1 o_5 p_1 o_1 l_1$	-1			-25

³ Degrees of Exceptionality: Empirical picture

(23) e.g. exceptional /ai/-repair in Finnish (cf. below) (Anttila, 2002; Pater, 2006)

	is deleted #_i3	assimilates #_i3
a ₁	Y	Ν
a _{0.8}	0	0
a _{0.6}	N	Y

→ two thresholds for different phonological behaviour for the same phonological element within a language

④ Implicational Relations

 if all exceptionality results from differences in activity of phonological elements, not all imaginable combinations of exceptionality patterns in a language are possible: Certain exceptionality patterns imply each other

Thresholds for Exceptionality

(24)

E_{1+x+y}	→ Exceptional Behaviour X+Y	
	Stronger: Threshold 2	
E_{1+x}	→ Exceptional Behaviour X	
	Stronger: Threshold 1	
E ₁	→ 'Normal' Behaviour	
	Weaker: Threshold 1	
E _{1-v}	→ Exceptional Behaviour V	
	Weaker: Threshold 1	
E _{1-v-w}	→ Exceptional Behaviour W	

Implicational Relations: GSRO and exceptionality patterns

- (25) Implicational restriction on exceptionality patterns If a language L has
 - a phonological element of (a) morpheme(s) that shows behavior₁ for process P1 and behavior₂ for process P2
 - and (a) morpheme(s) where the same phonological element shows behavior₃ for process P1 and behavior₄ for process P2
 - there cannot be (a) morpheme(s) where the same phonological element shows behavior₁ for process P1 and behavior₄ for process P2
- (26) Example: Excluded pattern with multiple self-reversing thresholds

	P1	P2
X _{1+X}	Y	N
X ₁	N	Y
X _{1-X}	Y	Y

Implicational Relations: Yet Another Toy Example

Language 4 with parasitic VH and hiatus avoidance

po-nek	ightarrow ponok	VH if same height
pu-nek	ightarrow punek	No VH if different height
pu–ok	ightarrow pok	Deletion of first V

1. Exceptional trigger for VH

ku −nek → kunok, *kunek

VH if different height

2. Exceptional non-undergoer of VD and trigger for VH

pu –ok	ightarrow puok, *pok	No V-deletion to avoid hiatus
pu –nek	ightarrow punok, *punek	VH if different height

3. Exceptional non-undergoer of VD

tu –ok	ightarrow tuok, *tok
tu –nek	\rightarrow tunek, *tunok

Deletion of first V No VH if different height

Language 4 is Impossible in GSRO

(27)	Normal: V with activity 1		
	a. b.	Мах[вк] > Sh[вк] *Hiat > MaxS	No non-parasitic VH VD
(28)	Exc	ceptional 1: V with activity X	
	a. b.	X×Sh[bk] > Max[bk] *Hiat > X×MaxS	Non-parasitic VH VD
(29)	Exc	ceptional 2: V with activity Y	
	a. b.	$\begin{array}{l} Y \times Sh[bk] > Max[bk] \\ Y \times MaxS > {}^*Hiat \end{array}$	Non-parasitic VH No VD
(30)	*Exc	ceptional 3: V with activity Z	
	a. b.	Max[bk] > Z imes Sh[bk] Z imes MaxS > *Hiat	No non-parasitic VH No VD

→ Weighting paradox (Z < X and Z > X; (28) vs. (30))
Implicational Relations: The Empirical Picture

(34) Lexical accent competition in Moses Columbian Salish (Czaykowska-Higgins, 1985, 1993*a*,*b*, 2011; Willett, 2003; Zimmermann, 2018*d*)

	deleted if Ψ>0.9 present	deleted if Ψ>0.8 present	deleted if ♀>0.6 present	deleted if ♀>0.4 present
φ1	N	N	Ν	Ν
φ0.9	N	Ν	Ν	Y
φ0.8	N	Ν	Y	Y
φ0.6	N	Y	Y	Y
φ0.4	Y	Y	Y	Y

multiple thresholds that are never self-reversing

(4) Implicational Relations: The Important Details

the implicational restriction crucially only holds for the same phonological elements

i

 (35) An apparent counterexample:
 Self-reversing thresholds in Yucatec Mayan vowels? (Krämer, 2001)

	undergoes full VH	optionally deletes	undergoes backness dissimimi- lation	undergoes height dissimimi- lation
V in most suffixes	N	Ν	Ν	Ν
V in some suffixes	Y	Y	N	Ν
V in some other suffixes	N	Ν	Y	Ν
V in one suffix	Ν	Ν	Ν	Y

Implicational Relations: The Important Details

- but the relevant constraints in Yucatec Mayan do not all refer to vowels, they in fact refer to three different phonological elements
- (36) GSRO account of Yucatec Mayan

Case studies

Case studies

Two Case studies illustrating the four predictions

(37)

	1 1 4	types			² Exc. for more	③ Degrees of	④ No self-reversing
	UG	−UG	Т	¬Τ	than 1 process	exceptionality	thresholds
Molinos M.		1		1	1		✓
Finnish	1		1			1	5

Exceptional H-tones in San Pedro Molinos Mixtec

Exceptional Non-Triggers in San Pedro Molinos Mixtec

some morphemes are exceptional (optional) non-triggers of H-perturbation and exceptional non-trigger of H-spreading

→ prediction ② exceptionality for more than one process

Background: Tones in San Pedro Molinos Mixtec (=MOL)

- all the data in the following comes from Hunter and Pike (1969)
 variety closely related to San Miguel el Grande Mixtec (Cf. Pike (1944); Mak (1950);
 Hollenbach (2003); McKendry (2013); theoretical accounts in Goldsmith (1990); Tranel (1995); Zimmermann (2018*a*))
- ∞ three level tones high (H; \dot{a}), mid (M; \bar{a}), and low (L; \dot{a})

(38) Tonal contrasts in MOL (Hunter and Pike, 1969, 27) tātá-sá tūtā-sá tūtù-sá 'my father' 'my firewood' 'my paper'
?ùù ríkī ?ùù kītī ?ùù híī 'two woodpeckers' 'two animals' 'two fists'

Process 1: H-Perturbation

 some morphemes trigger an additional H that overwrites underlying M or L of the initial TBU of a following morpheme (the 'perturbing' morphemes found in basically all Otomanguean languages (Dürr, 1987; Pike, 1944; Mak, 1950; Hollenbach, 2003; McKendry, 2013))

(39) H-overwriting

 $XX^{H}XX \rightarrow XX HX$

Process 1: H-Perturbation

				(Hunter and Pike, 1969, 35-36)
	M1	M2	Surface	Tones
No	n-perturb	ing morph	emes	
a.	?ù∫ì	rīŋkī	?ù∫ì rīŋkī	LL MM→LL MM
	'ten'	'mouse'	'ten mice'	
b.	? <u>11</u>	sùt∫ī ^H	?∏ sùt∫ī	MM+LM ^H →MM LM
	'one'	'child'	'one child'	
Per	turbing m	orphemes	'	
c.	kùù ^H	tfìká	kùù ∯í ká	ILL ^H LH→LL <mark>H</mark> H
	'four'	'baskets'	'four baskets'	
d.	3ā?ā ^Ħ	ʒìʧí	ʒā?ā ʒ <mark>í</mark> ʧí	MM ^H LH→MM HH
	'chiles'	'dry'	'dry chiles'	
e.	síví ^H	tèē	síví t <mark>é</mark> ē	HH ^H LM→HH H M
	'name'	'man'	'name of the man'	
f.	kītī ^H	kūù	kītī k ú ù	MM ^H ML→MM HL
	'animal'	'to die'	'the animal will die'	

Process 2: H-Spreading after Perturbation

- if a perturbing morpheme precedes a morpheme that ends in an M-toned TBU and is also perturbing, both TBU's of this morpheme become high
- (41) H-overwriting and spreading $XX^H XM^H \rightarrow XX HH$

Process 2: H-Spreading after Perturbation

MI M2 Surface Iones	
H-overwriting and spreading	
a. síví ^H sùtjī ^H síví s <mark>út</mark> jí HH ^H +LM ^H →HF	HH
'name' 'child' 'name of the child'	
b. síví ^H kītī ^H síví k <mark>í</mark> tí HH ^H +MM ^H →H	H HH
'name' 'animal' 'name of the animal'	
c. kītī ^H kāā ^H kītī k <mark>áá</mark> MM ^H +MM ^H →N	лм нн
'animal' 'to eat' 'the animal will eat'	
No spreading if M2 is not M-final	
d. kùù ^H ʒòò ^H kùù ʒóò ∥LL ^H +LL ^H →LL H	L
'four' 'mont(H) 'four months'	
No spreading if M2 has no floating H	
e. síví ^H tèē síví t <mark>é</mark> ē ∥HH ^H +LM→HH	HM
'name' 'man' 'name of the man'	

Optionally Perturbing Morphemes as Exceptions

 \mathcal{L} there are three classes of morphemes in MOL:

- 1. non-perturbing ones: XX
- 2. perturbing ones: **XX**^H
 - trigger H-perturbation
 - trigger H-spreading if they end in an M
- 3. optionally perturbing ones: XX^(H)
 - only optionally trigger H-perturbation
 - never trigger H-spreading if they end in an M
 - not optional variation between behaving as morpheme type 1 and 2 but mixture of properties

Optionally Perturbing Morphemes: 1. Optional H-Perturbation

(43)

(Hunter and Pike, 1969, 35-36)

	M1	M2	Surface	Tones
a.	<mark>hìkī^(H)</mark> 'fist, paw'	tèē 'man'	hìkī t <mark>é</mark> ē∼tèē 'the man's fist'	LM ^(H) +LM→LM HM~LM
b.	<mark>hìkī^(H)</mark> 'fist, paw'	∯į̂?į 'skunk'	hìkī ʧ <mark>í</mark> ʔīॄ~ţĨìʔīį 'the skunk's paw'	LM ^(H) +LM→LM HM∼LM
c.	ñùtī^(H) 'sand'	3ì∜í 'dry'	ñùtī ʒíʧí~ʒìʧí 'dry sand'	LM ^(H) +LH→LM HH∼LH

Optionally Perturbing Morphemes: 2. No Trigger for H-Spreading

(44)				(Hunter and Pike, 1969, 36)
	M1	M2	Surface	Tones
New	/er a triggei	·		
a.	síví^H 'name'	<mark>∯į̂ʔī̥́(H)</mark> 'skunk'	síví ʧ <mark>í</mark> ʔīֲ 'name of the skunk'	HH ^H +LM ^(H) →HH H M
b.	<mark>hìkī^(H)</mark> 'fist, paw'	<mark>∯Ì҈?īָ(H)</mark> 'skunk'	hìkī ʧ <mark>i</mark> ʔīॄ~ʧ͡jʔīॄ 'the skunk's paw'	$LM^{(H)}+LM^{(H)}\rightarrow LM HM\sim LM$
<i>t</i>	but always a	an underg	oer (if realized)	I
c.	<mark>∯į̂?į̇́(H)</mark> 'skunk'	kāā^H 'to eat'	t∫į̂?į̄ k <mark>áá</mark> ∼kāā 'the skunk will eat (it)'	$ LM^{(H)} + MM^{H} \rightarrow LM HH \sim MM$
d.	<mark>hìkī^(H)</mark> 'fist'	sùt∫ī ^H 'child'	hìkī s ú ∯í∼sù∯ī 'the child's fist'	LM ^(H) +LM ^H →LM HH∼LM

GSRO Account: Representational Assumption

- Some morphemes in MOL end in an unassociated (=floating)
 H-tone
- \mathbf{E} The floating H of some morphemes is **fully active**: H₁
- \mathbf{E} The floating H of other morphemes is **partially active**: H_{0.4}
 - the weakly active H_{0.4} is not a bad enough problem for *FLOAT and is not always associated
 - the weakly active H_{0.4} is not a bad enough problem for the markedness constraint *[MH] triggering H-spreading

Additional Assumption: Variation and MaxEnt

locality is modeled with MaxEnt

(Johnson, 2002; Goldwater and Johnson, 2003; Wilson, 2006)

- → both cases studies happen to involve optional variation but this optionality is in principle orthogonal to the assumption of gradient activity!
- all exemplary weights given are calculated by the UCLA Maxent Grammar Tool (Hayes, 2009)

GSRO Account: Constraints (Yip, 2002)

(45) a. *Float

Assign -X violation for every tone T_1 that is not associated to a TBU where X is the activity of T_1 .

b. MaxT

Assign -X violation for any tonal activity X in the input that is not present in the output.

c. *Cont

Assign -X violation for every TBU_1 associated to tones T_2 and T_3 where X is the shared activity of TBU_1 , T_2 , and T_3 .

d. Spec

Assign -1-X violations for every TBU τ_1 where X is the activity of tone(s) associated to τ_1 .

H-Perturbation: Realization of H₁

MOL: Fully active H1 is realized: Maxent probabilities

(47)

H-Perturbation: Optional Realization of H_{0.4}

(48)

$\begin{bmatrix} L_1 & MH_{0.4} \\ d_1 & d_1 \end{bmatrix} \begin{bmatrix} L_1 & M_1 \\ d_1 & d_1 \end{bmatrix}$	HXW 100	*Cont *001	теоат 1 *Float	LXVW 24	J SPEC	
$\mathbb{I} = a. \qquad \begin{array}{c} L_1 & M \\ \downarrow \\ \sigma_1 & \sigma_1 \end{array} \begin{array}{c} H_{0,4} \\ \downarrow \\ \sigma_1 & \sigma_1 \end{array} \begin{array}{c} L_1 & M_1 \\ \downarrow \\ \sigma_1 & \sigma_1 \end{array}$			-0.4			-28.4
$\mathbb{I} = b. \begin{array}{c} L_1 & M_1 \\ \downarrow \\ \sigma_1 & \sigma_1 \end{array} \begin{array}{c} H_{0,4} & M_1 \\ \downarrow \\ \sigma_1 & \sigma_1 \end{array}$				-1	-0.6	-28.2

 $0.4{\times}^{*}\text{Float} \sim MaxT + 0.6{\times}\text{Spec}$

MOL: H-Perturbation: Optional Realization of H_{0.4}: MaxEnt

(49)

H-Spreading is Avoidance of a Marked Tone Sequence

- triggered by a markedness constraint against sequences of MH-tones inside a morpheme (and only spreading of floating H is a possible repair)
- (50) *[MH]

Assign -X violation for every morpheme-internal sequence of M_1 and H_2 where X is the shared activity of M_1 and H_2 .

H-Spreading Triggered by H₁

(51)

$\begin{bmatrix} H_1 & H_1 \\ H_1 & H_1 \\ 0_1 & 0_1 \end{bmatrix} \begin{bmatrix} M_1 & M_1 \\ H_1 \\ 0_1 & 0_1 \end{bmatrix}$	МахН	* FLOAT	*[MH]	МАХТ	
	100	71	28	24	
a. $\begin{array}{cccc} H_1 & H_1 & H_1 & M_1 & H_1 \\ \hline a_1 & & & & \\ \sigma_1 & \sigma_1 & \sigma_1 & \sigma_1 \end{array}$		-1	-1	-1	-123
$\blacksquare b. \begin{array}{cccc} H_1 & H_1 & H_1 & H_1 \\ & & & \\ & & & \\ & \sigma_1 & \sigma_1 & \sigma_1 & \sigma_1 \end{array}$		-1		-2	-119

H-Spreading Triggered by H₁: Probabilities

(52)

No H-Spreading Triggered by Partially Active H_{0.4}

(53)

$ \begin{array}{c} $	MaxH	* Float	[MH]*	MAXT	
	100	71	28	24	
$\blacksquare a. \qquad \begin{matrix} H_1 & M_1 \\ \downarrow \\ \sigma_1 & \sigma_1 \end{matrix} H_{0.4}$		-0.4	-0.7	-1	-72
b. H_1 $H_{0.4}$		-0.4		-2	-76,4

No H-Spreading Triggered by Partially Active H_{0.4}: Probabilities

(54)

Prediction 2: Exceptionality for Multiple Processes

- the assumption of a partially active H_{0.4} predicts the two exceptional behaviours from gradient constraint violations
- MaxEnt correctly predicts that the gradient activity results in both variable and categorical exceptionality

Exceptional optional trigger for H-perturbation

(55)	Fully active H_1	(56)	Partially active H _{0.4}
	* Float > MaxT	0.4	$ imes$ *Float \sim MaxT + 0.6 $ imes$ Spec

Exceptional non-trigger for H-spreading

Prediction 4: Implicational Relations in MOL

- 🗞 two additional exceptional morpheme(s) (classes) 2+4 are possible
- الالا الح a constraint and the second and the seco

(59)

			HP	HS	WA: HP	WA:HS
☞ 1		H ₁	~	~	*Float > MaxT	*[MH] > MaxT
2	•	$H_{0.6}$	~	(🗸)	$0.6 \times *$ Float > MaxT + $0.4 \times$ Spec	$0.6 imes * [MH] \sim MaxT$
IS 3		$H_{0.4}$	(🖌)	×	$0.4 imes$ *Float \sim MaxT + $0.6 imes$ Spec	$MaxT > 0.4 \times *[MH]$
4	•	$H_{0.2}$	×	×	MaxT + $0.8 imes Spec$ $> 0.2 imes *Float$	$MaxT > 0.2 \times *[MH]$
* 5		$H_{?}$	×	~	$MaxT + (1-?) \times Spec > ? \times *Float$	$? \times *[MH] > MaxT$

HP=trigger for H-perturbation ✓=yes

Exceptional vowels in Finnish

Exceptional Triggers and Undergoers: Finnish (Anttila, 2002; Pater, 2006)

- 🗞 exceptional repair for heteromorphemic /ai/ sequences
- type of repair (assimilation, deletion, or variation between both) is morpheme-specific
 - → prediction ③ degrees of exceptionality

Exceptional Triggers: Vowel Assimilation to Avoid /ai/ (Anttila, 2002)

certain /i/-initial suffixes (PL/PST) trigger raising of a preceding /a/
 others (e.g. Cond) don't (60-b)

(60)

	underlying	surface		
a.	pala-i	paloi	'burn'–Рsт	p.4
	tavara-i-ssa	tavaroissa	'thing'-PL-INE	p.5
	kana-i-ssa	kanoissa	'hen'-PL-INE	p.4
	kihara-i-ssa	kiharoissa	'curl'-Pl-Ine	p.13
	korea-i-ssa	koreoissa	'Korea'-Pl-Ine	p.13
	kahvi-la-i-ssa	kahviloissa	'cafe'-РL-Ine	p.5
	kana-la-i-ssa	kanaloissa	'chicken shed'-PL-INE	p.5
b.	anta-isi	antaisi	ʻgive'-Cond	(Pater, 2010, 133)

Exceptional Triggers: Vowel Deletion to Avoid /ai/ (Anttila, 2002)

for certain morphemes, the exceptional triggers result in deletion of a preceding /a/

(61)

underlying	surface		
otta-i	otti	'take'-Рsт	p.4
jumala–i–ssa	jumalissa	'God'-Pl-Ine	p.5
suola-i-ssa	suolissa	ʻsalt'-Pl-Ine	p.6
kihara-i-ssa	kiharissa	'curly'-Pl-Ine	p.13
korea-i-ssa	koreissa	'beautiful'-PL-INE	p.13
tutki-va-i-ssa	tutkivissa	'researching'-PL-INE	p.5
anta-va-i-ssa	antavissa	ʻgiving'–PL–Ine	p.5

Exceptional Triggers: Alternation between Assimilation and Deletion

So for yet other morphemes, the exceptional triggers result in variation between deletion and assimilation

(62)

	underlying	surface	
itara-i-ssa	itaroissa \sim itarissa	'stingy'-PL-Ine	p.5
taitta-i	taittoi \sim taitti	'break'-Рsт	p.6
omena-i-ssa	omenoissa \sim omenissa	ʻapple'-PL-Ine	р.9

Summary: Exceptional Triggers and Undergoers

- \sim there are two 'classes' of (/i/-initial) suffixes:
 - NT no repair for /ai/-sequences
 - T repair for /ai/-sequences
- ∞ there are three 'classes' of (/a/-final) morphemes:
 - A assimilation before T-suffix
 - D deletion before T-suffix
 - AD assimilation/deletion before T-suffix

(63)

a#-morphemes	outcome	#i-morphemes
A		
AD	ai	NT
D		
A	oi	
AD	oi \sim i	Т
D	i	

Caution: Only Half the Story

logical regularities/tendencies:

- deletion is more likely after a round vowel
- deletion is more likely after a labial consonant
- phonological generalizations apply exceptionless in underived bisyllabic stems
- → **Dissimilation** effects: deletion avoids two high/labial sounds
- 🗞 N's typically assimilate, A's typically delete
GSRO Account in a Nutshell

T vs. NT suffixes

- default activity /i1/ doesn't induce enough violation of *ai to trigger repair
- higher activity /i₃/ results in threshold-crossing violation of *ai that triggers repair

D vs. A vs. AD

- $\boldsymbol{\mathfrak{F}}$ default activity /a1/ results in assimilation
- \clubsuit lower activity $/a_{0.6}/$ results in deletion: weak segment wants to be avoided
- ∞ intermediate activity $/a_{0.8}/$ shows variable behaviour

GSRO Account in a Nutshell

(64)

a#	surface	#i
A: /a ₁ /	$[a_1i_1]$	
AD: /a _{0.8} /	$[a_{0.8}i_1]$	NT: /i ₁ /
D: /a _{0.6} /	$[a_{0.6}i_1]$	
A: /a ₁ /	[o ₁ i ₃]	
AD: /a _{0.8} /	$[o_{0.8}i_3] \sim [i_3]$	T: /i ₃ /
D: /a _{0.6} /	[i ₃]	

GSRO Account: Constraints

(65)

a. *ai
 Assign -X violations for every [i]_X with activity X immediately preceded by an [a].

- MAX[LW]
 Assign -X violations for every activity X of [+low] that is present in the input but not the output.
- c. Max[hi]

Assign -X violations for every activity X of [+high] that is present in the input but not the output.

GSRO Account: Constraints

- (66) a. *WEAK Assign -1-X violations for every phonological element with activity X<1.</p>
 - b. *Strong

Assign -X-1 violations for every phonological element with activity X>1.

Avant: Segments Keep Their Underlying Activity in the Output

(67)

$t_{1}a_{0.6}$		DepS	*Wеак	
1 0.0		100	41	
rs a. t	1a _{0.6}		-0.4	-16
b. t	₁ a ₁	-0.4		-40

(68)

t_1a_3		MaxV 10	*Strong 1	
I® a.	t_1a_3		-2	-2
b.	t ₁ a ₁	-2		-20

Non-Triggering Suffix and $/a_1/$

$\boldsymbol{\mathfrak{F}}$ a -1 violation of *ai is not important enough to trigger a repair

(69)

a1 i1		Max[hi]	*Wеак	Max[lw]	*ai	MaxV	
		100	41	37	16	10	
I® a.	$a_1 i_1$				-1		-16
b.	01 i1			-1			-37
с.	i ₁			-1		-1	-47
d.	$a_1 e_1$	-1					-100
e.	a ₁	-1				-1	-110

Triggering Suffix and $/a_1/$

- \clubsuit the violation of *ai caused by a more active $/i_{3}/$ crosses the threshold for triggering a repair
- $\boldsymbol{\mathfrak{F}}$ assimilation is optimal since V-deletion implies a superset of violations

(70)

a ₁ i ₃		*₩еак	Max[lw]	*ai	MaxV	
		41	37	16	10	
a.	$a_1 i_3$			-3		-48
r☞ b.	01 i3		-1			-37
с.	i ₁		-1		-1	-47

Triggering Suffix and $/a_{0.6}/$

(71)

a _{0.6} i ₃	*Wеак	Max[lw]	*ai	MaxV	
	41	37	16	10	
a. a _{0.6} i ₃	-0.4		-3		-64.4
b. o _{0.6} i ₃	-0.4	-1			-53.4
r≊ c. i _{0.6}		-1		-0.6	-43

Non-Triggering Suffix and $/a_{0.6}/$

no misprediction for weak segments outside of T-suffix-contexts: marked structure of a weak V is tolerated

(72)

a _{0.6} i ₁	*Weak	Max[lw]	*ai	MaxV	
	41	37	16	10	
r≊ a. a _{0.6} i ₁	-0.4		-1		-32.4
b. o _{0.6} i ₁	-0.4	-1			-53.4
c. i ₁		-1		-0.6	-43

Triggering Suffix and $/a_{0.8}/$

V with a weak activity between those repairs: Optionality between both options*

(73)

a _{0.8} i ₃		*₩еак	Max[lw]	*ai	MaxV		
		41	37	16	10		Probability
a.	a _{0.8} i ₃	-0.2		-3		-56.2	2.5782981684922935E-6
r⊠ b.	o _{0.8} i ₃	-0.2	-1			-45.2	0.5000118759256124
[™] C.	i ₃		-1		-0.8	-45	0.4999830712776138

 $0.2 \; x \; ^* \text{Weak} \sim 0.8 \; x \; \text{MaxV}$

*Tableaux above: Winning candidate had a probability of at least 0.9999.

Recall: Phonological Regularities?

- account can easily integrate the account of the phonological conditions from Anttila (2002):
 - dissimilation effects follows from OCP constraints like OCP_{ROUND}
 - \mathscr{I} syllable-counting effect follows from domain-specific OCP_{ROUND}- ϕ
 - e.g. categorical restriction that deletion after /o/ in even-numbered stems: high-weight of OCP_{ROUND}-φ

(Lexical Factors of) Finnish Assimilation/Deletion in GSRO: Summary

Relevant activity thresholds

(74)

i₁

i3

- not enough to trigger a repair to avoid a violation of *ai
 - threshold to avoid *ai

(75)

- a₁ default repair of assimilation
- a_{0.8} variation between assimilation and deletion
- a_{0.6} deletion

(only activity differences for /a and /i were considered: activity differences for other vowels have no interesting effect (at least not for *ai)

Alternative Accounts of Exceptionality

Lexically Indexed Constraints

(e.g. Ito and Mester, 1990; Golston and Wiese, 1996; Fukazawa, 1999; Pater, 2000; Pater and Coetzee, 2005; Pater, 2006; Flack, 2007; Pater, 2010)

- constraints can exist in versions indexed to (classes of) morphemes that are only violated if the scope of the violation contains material of an indexed morpheme (Pater, 2010)
- (76) Exceptional triggers and lexically indexed constraints The exceptional triggers are indexed to a higher-ranked markedness constraint $SH[BK]_A$, $SH[BK]_{HI} \gg MAX[BK] \gg SH[BK]$
- (77) Exceptional non-undergoers and lexically indexed constraints The exceptional non-undergoers are indexed to a higher-ranked faithfulness constraint Max[BK]_R ≫ SH[BK]_{HI} ≫ Max[BK] ≫ SH[BK]

Lexically Indexed Constraints and Our Four Predictions

- 1 Unified account for (non)undergoers and (non)triggers 2
 - Exceptional non-triggers/undergoers are complement set of exceptional triggers/non-undergoers (=all 'non-exceptional' morphemes are indexed)
- ^② Exceptionality for more than one process $\overline{\bigcirc}$
 - → Is a concidence: Morpheme (class) happens to be indexed to more than one constraint – two different explanations
- ③ Degrees of exceptionality ③
 - → Fall out from more indexed versions of the same constraint(s)
- ④ Implicational restrictions between exceptionality patterns 🙁
 - → Don't exist e.g. $MaxS_{B, C}$, $Sh[BK]_{A, B}$, $Sh[BK]_{HI} \gg Max[BK]$, $*VV \gg Sh[BK]$, MaxS

Autosegmental Defectivity

(Lieber, 1992; Stonham, 1994; Saba Kirchner, 2010; Trommer, 2011; Bermúdez-Otero, 2012; Bye and Svenonius, 2012; Trommer and Zimmermann, 2014; Zimmermann, 2017*c*)

- morphemes can be underspecified or overspecified: Floating features/moras/tones, lack of features/moras/tones,...
- (78) Exceptional undergoers and autosegmental defectivity Morphemes contain underspecified elements and need specification/escape faithfulness: e.g. vowel without [±back] feature undergoes non-parasitic harmony
- (79) Exceptional triggers and autosegmental defectivity Morphemes contain floating/unassociated features, moras, tones: e.g. morphemes with floating [±high] feature are triggers for non-parasitic vowel harmony

Autosegmental Defectivity and Our Four Predictions

- Unified account for (non)undergoers and (non)triggers (1)
- Exceptionality for more than one process 2
 - Exceptionality is a consequence from contrastive representations
- Degrees of exceptionality 🙂 3
 - → Severely limited by number of contrasting elements that can be lacking/floating
- 4 Implicational restrictions between exceptionality patterns
 - → Don't exist; different representational properties (underspecification, floating elements) can freely be combined

Comparison: Three Accounts of Exceptionality

(80)

- 1 4 patterns
- ² More than one process
- ③ Degrees of exceptionality
- ④ Implicational restrictions

- the assumption of gradient activity in the output predicts the phonological exceptions from gradient faithfulness and markedness violations
- four properties of exceptionality patterns easily fall out that are hard to capture under alternatives
- outlook: activity differences can not only be a property of underlying representations, they can be derived in the phonology (Trommer, 2018; Zimmermann, 2019*a*; Walker, 2019)

References

- Amato, Irene (2018), 'A gradient view of Raddoppiamento Fonosintattico', ms., University of Leipzig.
- Anttila, Arto (2002), 'Morphologically conditioned phonological alternations', *Natural Language and Linguistic Theory* **20**, 1–42.
- Bermúdez-Otero, Ricardo (2012), The architecture of grammar and the division of labour in exponence, *in* J.Trommer, ed., 'The morphology and phonology of exponence: The state of the art', Oxford University Press, Oxford, pp. 8–83.
- Braver, Aaron (2013), Degrees of incompleteness in neutralization: Paradigm uniformity in a phonetics with weighted constraints, PhD thesis, Rutgers The State University of New Jersey-New Brunswick.
- Bye, Patrick and Peter Svenonius (2012), Non-concatenative morphology as epiphenomenon, *in* J.Trommer, ed., 'The morphology and phonology of exponence: The state of the art', Oxford University Press, Oxford, pp. 426–495.
- Corina, David P. (1994), The induction of prosodic constraints, *in* S. D.Lima, R.Corrigan and G.Iverson, eds, 'The Reality of Linguistic Rules', John Benjamins, pp. 115–145.
- Czaykowska-Higgins, Ewa (1985), 'Predicting stress in Columbian Salish', ICSNL 20.
- Czaykowska-Higgins, Ewa (1993a), 'Cyclicity and stress in Moses-Columbia Salish (Nxa'amxcin)', Natural Language and Linguistic Theory 11, 197–278.
- Czaykowska-Higgins, Ewa (1993*b*), The phonology and semantics of CVC reduplication in Moses-Columbian Salish, *in* A.Mattina and T.Montler, eds, 'American Indian Linguistics and ethnography in honor of Laurence C. Thompson', UMOPL, pp. 47–72.
- Czaykowska-Higgins, Ewa (2011), The morphological and phonological constituent structure of words in Moses-Columbia Salish (Nxa?amxcín), *in* E.Czaykowska-Higgins and M. D.Kinkade, eds, 'Salish Languages and Linguistics: Theoretical and Descriptive Perspectives', de Gruyter Mouton, Berlin, Boston, pp. 153–196.

- Dürr, Michael (1987), 'A preliminary reconstruction of the Proto-Mixtec tonal system', Indiana 11, 19-61.
- Faust, Noam and Paul Smolensky (2017), 'Activity as an alternative to autosegmental association', talk given at mfm 25, 27th May, 2017.
- Flack, Kathryn (2007), 'Templatic morphology and indexed markedness constraints', *Linguistic Inquiry* **38**, 749–758.
- Fukazawa, Haruka (1999), Theoretical implications of OCP effects in feature in optimality theory, PhD thesis, University of Maryland at College Park.
- Garde, Paul (1965), 'Accentuation et morphologie', La Linguistique 1, 25-39.
- Goldsmith, John (1990), Autosegmental and Metrical Phonology, Blackwell, Oxford.
- Goldwater, Sharon and Mark Johnson (2003), Learning ot constraint rankings using a maximum entropy model, *in* J.Spenader, A.Eriksson and O.Dahl, eds, 'Proceedings of the Workshop on Variation within Optimality Theory', Stockholm University, Stockholm, pp. 111–120.
- Golston, Chris and Richard Wiese (1996), 'Zero morphology and constraint interaction: subtraction and epenthesis in German dialects', *Yearbook of Morphology 1995* pp. 143–159.
- Hayes, Bruce (2009), 'Manual for maxent grammar tool', online available at http://linguistics.ucla.edu/people/hayes/MaxentGrammarTool/ManualForMaxentGrammarTool.pdf.
- Hollenbach, Barbara (2003), The historical source of an irregular Mixtec tone-sandhi pattern, *in* M. R.Wise, T.Headland and R.Brend, eds, 'Language and life: essays in memory of Kenneth L. Pike', SIL International, Dallas, pp. 535–552.
- Hunter, Georgia and Eunice Pike (1969), 'The phonology and tone sandhi of Molinos Mixtec', Linguistics .
- Hyman, Larry M. (2010), Do tones have features?, *in* J. G.et al., ed., 'Tones and Features (Clements memorial volume)', de Gruyter, Berlin, pp. 50-80.

- Inkelas, Sharon (2015), Confidence scales: A new approach to derived environment effects, in Y. E.Hsiao and L.-H.Wee, eds, 'Capturing Phonological Shades Within and Across Languages', Cambridge Scholars Publishing, Newcastle upon Tyne, pp. 45–75.
- Ito, Junko and Armin Mester (1990), The structure of the phonological lexicon, *in* N.Tsujimura, ed., 'The Handbook of Japanese Linguistics', Blackwell, Malden, pp. 62–100.
- Jang, Hayeun (2019), 'Emergent phonological gradience from articulatory synergies: simulations of coronal palatalization', talk, presented at the LSA 2019, New York, January 05, 2019.
- Johnson, Mark (2002), Optimality-theoretic lexical functional grammar, *in* S.Stevenson and P.Merlo, eds, 'The Lexical Basis of Sentence Processing: Formal, Computational and Experimental Issues', John Benjamins, Amsterdam, pp. 59–73.
- Koster, Jan (1986), 'The relation between pro-drop, scrambling, and verb movements', Ms., Rijksuniversiteit Groningen.
- Krämer, Martin (2001), 'Yucatec Maya vowel alternations harmony as syntagmatic identity', Zeitschrift für Sprachwissenschaft 20, 175–217.
- Krämer, Martin (2003), Vowel Harmony and Correspondence Theory, Mouton de Gruyter.
- Kushnir, Yuriy (2017), 'Accent strength in Lithuanian', talk, given at the workshop on Strength in Grammar, Leipzig, November 12, 2017.
- Lakoff, George (1970), Irregularity in Syntax, Holt, Rinehart and Winston.
- Legendre, Geraldine, Yoshiro Miyata and Paul Smolensky (1990), 'Harmonic grammar a formal multi-level connectionist theory of linguistic well-formedness: Theoretical foundations', Proceedings of the 12th annual conference of the cognitive science society pp. 388–395.
- Lieber, Rochelle (1992), Deconstructing Morphology, Chicago: University of Chicago Press.

- Lin, Yen-Hwei (1997a), Cyclic and noncyclic affixation in Piro, in G.Booij and J.van de Weijer, eds, 'Phonology in progress – progress in phonology', Holland Academic Graphics, The Hague, pp. 167–188.
- Lin, Yen-Hwei (1997b), 'Syllabic and moraic structures in Piro', Phonology 14, 403-436.
- Mahanta, Shakuntala (2012), 'Locality in exceptions and derived environments in vowel harmony', Natural Language and Linguistic Theory **30**, 1109–1146.
- Mak, Cornelia (1950), 'A unique tone perturbation in Mixteco', International Journal of American Linguistics 16, 82-86.
- McCollum, Adam (2018), 'Gradient morphophonology: Evidence from Uyghur vowel harmony', talk at AMP 2018, San Diego, October 06, 2018.
- McKendry, Inga (2013), Tonal Association, Prominence and Prosodic Structure in South-Eastern Nochixtlán Mixtec, PhD thesis, University of Edinburgh.
- Nformi, Jude and Sören Worbs (2017), 'Gradient tones obviate floating features in Oku tone sandhi', talk at the Workshop on Strength in Grammar, Leipzig, November 10, 2017.
- Noske, Roland (1985), Syllabification and syllable changing processes in Yawelmani, *in* H.van der Hulst and N.Smith, eds, 'Advances in Nonlinear Phonology', Foris, pp. 335–361.
- Pater, Joe (2000), 'Nonuniformity in English stress: the role of ranked and lexically specific constraints', *Phonology* **17**(2), 237–274.
- Pater, Joe (2006), The locus of exceptionality: Morpheme-specific phonology as constraint indexation, in L.Bateman, M.O'Keefe, E.Reilly and A.Werle, eds, 'Papers in Optimality Theory III', GLSA, Amherst, MA, pp. 259–296.
- Pater, Joe (2010), Morpheme-specific phonology: Constraint indexation and inconsistency resolution, *in* S.Parker, ed., 'Phonological Argumentation: Essays on Evidence and Motivation', Equinox, London, pp. 123–154.

- Pater, Joe and Andries Coetzee (2005), 'Lexically specific constraints: gradience, learnability, and perception', *Proceedings of the 3rd Seoul International Conference on Phonology* pp. 85–119.
- Pike, Kenneth L. (1944), 'Analysis of a Mixteco text', *International Journal of American Linguistics* **10**, 113–138.
- Potts, Christopher, Joe Pater, Karen Jesney, Rajesh Bhatt and Michael Becker (2010), 'Harmonic grammar with linear programming: From linear systems to linguistic typology', *Phonology* pp. 77–117.
- Rizzi, Luigi (1986), 'Null objects in Italian and the theory of pro', Linguistic Inquiry 17, 501-57.
- Rosen, Eric (2016), Predicting the unpredictable: Capturing the apparent semi-regularity of rendaku voicing in Japanese through Harmonic Grammar, *in* E.Clem, V.Dawson, A.Shen, A. H.Skilton, G.Bacon, A.Cheng and E. H.Maier, eds, 'Proceedings of BLS 42', Berkeley Linguistic Society, Berkeley, pp. 235–249.
- Rosen, Eric (2018), 'Evidence for gradient input features from Sino-Japanese compound accent', poster, presented at AMP 2018, San Diego, October 06, 2018.
- Saba Kirchner, Jesse (2010), Minimal Reduplication, PhD thesis, UC Santa Cruz.
- Sande, Hannah (2017), Distributing morphologically conditioned phonology: Three case studies from Guébie, PhD thesis, University of California, Berkeley.
- Smith, Caitlin (2017), 'Harmony triggering as a contrastive property of segments', *Proceedings of AMP* 2016.
- Smolensky, Paul and Matthew Goldrick (2016), 'Gradient symbolic representations in grammar: The case of French liaison', Ms, Johns Hopkins University and Northwestern University, ROA 1286.

Stonham, John (1994), Combinatorial morphology, John Benjamin, Amsterdam.

Tranel, Bernard (1995), 'Rules vs. constraints: a case study', ROA 72.

- Trommer, Jochen (2011), 'Phonological aspects of Western Nilotic mutation morphology', Habilitation, Leipzig University.
- Trommer, Jochen (2018), 'The layered phonology of Levantine Arabic syncope', talk at the Workshop on Cyclic Optimization, Leipzig, May 18, 2018.
- Trommer, Jochen and Eva Zimmermann (2014), 'Generalised mora affixation and quantity-manipulating morphology', *Phonology* **31**, 463–510.
- Vaxman, Alexandre (2016*a*), Diacritic weight in the extended accent first theory, *in* 'University of Pennsylvania Working Papers in Linguistics', University of Pennsylvania.
- Vaxman, Alexandre (2016*b*), How to Beat without Feet: Weight Scales and Parameter Dependencies in the Computation of Word Accent, PhD thesis, University of Connecticut.
- Walker, Rachel (2019), 'Gradient feature activation and the special status of coronals', talks, presented at $P\Phi F$ 2019, April 05, 2019.
- Willett, Marie Louise (2003), A grammatical sketch of Nxa'amxcin (Moses-Columbia Salish), PhD thesis, University of Victoria.
- Wilson, Colin (2006), 'Learning phonology with substantive bias: An experimental and computational study of velar palatalization', *Cognitive Science* **30**, 945–982.
- Yip, Moira (2002), Tone, Cambridge University Press.
- Zimmermann, Eva (2017*a*), 'Being exceptional is being weak: tonal exceptions in San Miguel el Grande Mixtec', poster, presented at AMP 2017, New York, September 16, 2017.
- Zimmermann, Eva (2017*b*), 'Gradient symbols and gradient markedness: a case study from Mixtec tones', talk, given at the 25th mfm, 27th May, 2017.
- Zimmermann, Eva (2017c), Morphological Length and Prosodically Defective Morphemes, Oxford University Press, Oxford.

- Zimmermann, Eva (2018*a*), Being exceptional is being weak: Tonal exceptions in San Miguel el Grande Mixtec, *in* G.Gallagher, M.Gouskova and S. H.Yin, eds, 'Proceedings of AMP 2017', LSA, http://dx.doi.org/10.3765/amp.
- Zimmermann, Eva (2018*b*), 'Exceptional non-triggers are weak: The case of Molinos Mixtec', talk at OCP 15, January 13, 2018.
- Zimmermann, Eva (2018c), 'Gradient symbolic representations and the typology of ghost segments: An argument from gradient markedness', talk, given at AMP 2018, San Diego, October 06, 2018.
- Zimmermann, Eva (2018d), Gradient symbolic representations in the output: A case study from Moses Columbian Salishan stress, in S.Hucklebridge and M.Nelson, eds, 'Proceedings of NELS 48', pp. 275–284.
- Zimmermann, Eva (2019*a*), 'Faded copies: Reduplication as sharing of activity', talk, to be given at OCP 16.
- Zimmermann, Eva (2019b), Gradient symbolic representations and the typology of ghost segments, *in* K.Hout, A.Mai, A.McCollum, S.Rose and M.Zaslansky, eds, 'Proceedings of AMP 2018', LSA, https://doi.org/10.3765/amp.
- Zoll, Cheryl (1996), Parsing below the segment in a constraint-based framework, PhD thesis, UC Berkeley.

Eva.Zimmermann@uni-leipzig.de