Optimal feet vs. optimal tone placement

Eva Zimmermann Universität Leipzig

Micro-Workshop on Accent Leipzig, January 29, 2019

Main Claim

- opposing phonological preferences in HS can be resolved on a 'first come-first served'-principle: Optimization of underlying elements has priority over optimization of inserted structure
- a serial optimization account allows to predict positionally restricted tone/accent systems from the order between foot parsing and tone association
- this correctly predicts
 - the non-local templatic accent system in Mayo and
 - the asymmetric distribution of different defaults in Goizueta Basque

that are problematic to capture in alternative approaches

Plan

- 1. HS and PRAS
- 2. Templatic PRAS in Mayo
- 3. Different Defaults in Goizueta Basque
- 4. Discussion

HS and PRAS

Positionally Restricted Accent Systems (PRAS)

(1) Prosodic contrasts in Goizueta Basque (Hualde et al., 2008, 3)

		Rising pitch			Falling pitch	
2nd σ	A.	giz <mark>ó</mark> n	'man'	C.	pur <mark>è</mark>	'puree'
		em <mark>á</mark> kume	'woman'		esk <mark>ò</mark> la	'school'
1st σ	B.	s <mark>é</mark> me	'son'	D.	b <mark>à</mark> so	ʻglass'
		<mark>á</mark> ma	'mother'		l <mark>è</mark> ngusu	'cousin'

- lexical contrast for pitch: Prototypical tone
- positionally restricted, usually only a single V/σ: Prototypical stress
 - A special third pattern with an 'accent' mark? (e.g. for Japanese McCawley (1968); Ross (1985); Haraguchi (1991); Kubozono (1993))
 - → 'accent' patterns always reanalyzable as tonal and/or metrical patterns and their interaction (Hyman, 2009; Köhnlein, 2019)

PRAS as Interacting Metrical and Tonal Structure: Goizueta Basque

 prominent position on first or second V since iambic left-aligned foot and tone only on foot head (e.g. de Lacy, 2002)

(2)		Binary foot	Unary foot
	H-tone	Η (g i z o n) _φ	H (se) _φ me
	L-tone	L (esko) _φ la	$(\begin{array}{c} L \\ (\begin{array}{c} b \end{array})_{p} s o \end{array}$

Different Preferences for Feet and Tones

- (3) a. ALIGN(H;L)

 Assign * for every TBU that intervenes between the left word edge and the leftmost TBU a tone H is associated to.
 - b. FTBIN Assign * for each ϕ that is not binary on the σ level.

(4)
$$\begin{array}{c|c} H & L \\ (g \ i \ z \ o \ n)_{\varphi} & (e \ s \ k \ o)_{\varphi} \ I \ a \\ \hline ALIGN(H;L) = \textcircled{2} & FTBIN = \textcircled{2} \\ \end{array}$$

$$\begin{array}{c|c} H & L \\ (s \ e)_{\varphi}me & (b \ a)_{\varphi}so \\ \hline ALIGN(H;L) = \textcircled{2} & FTBIN = \textcircled{2} \\ \end{array}$$

- conflict resolved:
 - Standard Parallel OT: Ranking prefers only one
 - Harmonic Serialism: Different defaults since underlying structure is optimized first

Harmonic Serialism (McCarthy, 2008*a,b*, 2010; Elfner, 2009, 2016; Moore-Cantwell, 2011; McCarthy et al., 2012; Torres-Tamarit, 2012; Pruitt, 2012; Pater, 2012)

- GEN is restricted by gradualness and there is a GEN-EVAL-Loop that continues as long as a new step is harmonically improving
- possible one-step operations in the domain of feet and tone: (McCarthy et al., 2012; Breteler, 2018)
 - 1. Link a tone to a TBU
 - Insert a tone and link it to a TBU
 - 3. Build a foot
 - 4. Delink a tone from a TBU

Templatic PRAS in Mayo

Mayo (Uto-Aztecan; Hagberg (1989, 1990, 2006); Hyman (2009); Spahr (2016))

- one vowel in every word is realized with a higher pitch
- (5) *Mayo accent (Hagberg, 2006, 73)*

Accented		Unaccented	
ch ú pnake	'will harvest' Trns	ponnáke	'will play' Trns
híchupnake	'will harvest' Intr	hip <mark>ó</mark> nnake	'will play' Intr
h í hichupnake	'will always harvest'	hih <mark>í</mark> ponnake	ʻwill always play' Інтг
chíknake	'will sweep' Trns	wis <mark>é</mark> ka	'sawing' Trns
h í chiknake	'will sweep' Inтr	hiw í seka	'sawing' Intr
híhichiknake	ʻwill always sweep' Іnтп	hihíwiseka	'always sawing'

→ a **non-local templatic** accent system: The stem determines the stress pattern for the whole word and is not necessarily stressed itself

Serial Account in a Nutshell

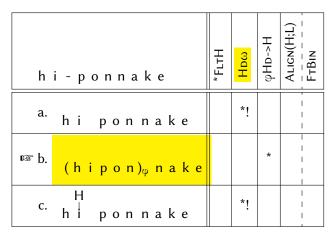
Conflict for tones as head of ϕ

- tones are preferably initial: (hí)_φchupnake
- iambic feet are preferably binary: (hipón)_φnake

Underlying contrast: Stems with/without a floating H-tone

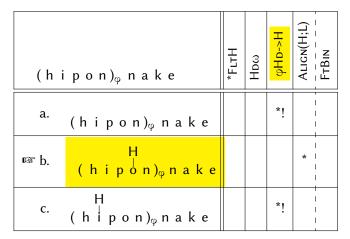
- underlying floating H-tones are associated to their preferred position before feet are built
- without a H-tone, the unmarked foot is created before a default H is inserted

Steps in a Serial Account of Mayo


(6)1. Morpheme Concatenation Н hi-chupnake hi-ponnake 2. Floating H-association H hi chupnake ponnake h i 3. Foot assignment H (hi)_φ chupnake (hipon)_φnake 4. Insertion of H on foot head H (hipon)_φnake

Constraints

- (7) a. *FLTH
 Assign * for each tone not associated to a TBU.
 - b. $HD\omega$ (after (Ito and Mester, 2009)) Assign * for every prosodic word that does not dominate a foot.
 - c. ϕ HD->H (=LICENSE(MIN-R, H) (Breteler, 2018, 20)) For each MinFt, assign * if its rightmost syllable is not associated to a H tone.
 - d. DepH
 Assign * for every tone in the output without an input correspondent.


HS optimization: Step 1, No underlying H

(8) Foot building

HS optimization: Step 2, No underlying H

(9) Default H

HS optimization: Step 1, Underlying H

(10) Tone association

H hi-chupnake	*FLTH	НБω	н<-аНф	ALIGN(H;L)	FTBIN
a. hi-chupnake	*!	*			
b. (hichup) _φ nake	*!		*		
H hichupnake		*			
d. Hichupnake		*		*!	

HS optimization: Step 2, Underlying H

(11) Foot building

H h i c h u p n a k e	*FLTH	Hpw	h<-αHφ	ALIGN(H;L)	FTBIN
a. H hichupnake		*!			
H (hi) _φ chupnake					 * *
d. (hipon) _φ nake		*!			

Summary: The 'First come-first serve'-Account

 competition between an ideally positioned H and an ideal bisyllabic foot is resolved by the order of operations; determined by a representational contrast

Different Defaults in Goizueta Basque

Four prosodic patterns (Hualde et al., 2008)

(12) Prosodic contrasts in Goizueta Basque (Hualde et al., 2008, 3)

		Rising pitch	-		Falling pitch	
2nd σ	A.	giz <mark>ó</mark> n	'man'	C.	pur <mark>è</mark>	'puree'
		al <mark>á</mark> ba	'daughter'		tip <mark>ù</mark> la	'onion'
		em <mark>á</mark> kume	'woman'		esk <mark>ò</mark> la	'school'
1st σ	B.	s <mark>é</mark> me	'son'	D.	b à so	ʻglass'
		ú me	'children'		m <mark>ò</mark> ro	'Moor'
		<mark>á</mark> ma	'mother'		l <mark>è</mark> ngusu	'cousin'

Serial Account in a Nutshell

Conflict: Preferred positions for tones (=head of a φ)

- the initial V: (hí)_ωponnake
- inside an unmarked and hence bisyllabic left-aligned φ: C, D

Underlying contrast: Stems with/without a floating H/L

- floating L's: associated to their preferred position before feet are built
- floating H's: wait until feet are built and associate to head of a binary foot
- no floating tones: default-H's are inserted into the head of a binary foot
- → different defaults for underlying vs. inserted and L- vs. H-tones

Steps in a Serial Account of Goizueta Basque

Lexical representation

L H H
b a s o g i z o n p u r a s e m e

1. Floating L-association

L H H
b a s o g i z o n p u r a s e m e

2. Foot assignment

L H H
(b a)
$$_{\phi}$$
 s o (g i z o n) $_{\phi}$ (p u r a) $_{\phi}$ (s e) $_{\phi}$ me

3. Floating H-association

L H H
(b a) $_{\phi}$ s o (g i z o n) $_{\phi}$ (p u r a) $_{\phi}$ (s e) $_{\phi}$ me

4. Insertion of default-L on foot head

L H L H
(b a) $_{\phi}$ s o (g i z o n) $_{\phi}$ (p u r a) $_{\phi}$ (s e) $_{\phi}$ me

HS Account for Goizueta Basque

(14)Ranking

*FLTL , DEPL
$$\gg$$
 Hd ω \gg *FLTH , φ Hd->H, H-> φ Hd \gg FTBin, Align(H;L), MAL, DAL, DEPH

(15)Predicted outcomes for bi-/trisyllabic stems with 0-1 tone(s)

7.	σσ	(σσ)	C: VV
8.	σσσ	Η (σσ)	A: VÝ
9.	Η σσσ	Н (σσ) σ	A: VÝ
10.	L σσσ	L (σ)σ σ	D: VV
11.	Η σσσ	Η (σ)σ σ	B: ÝV
12.	L	L (σ)σ σ	D: VV

An Alternative in a Parallel OT system?

(16) Ranking

 $\mathsf{Hd}\omega, \mathsf{^*FltL}, \mathsf{^*FltH}, \phi \mathsf{Hd} \mathsf{-\!\!>} \mathsf{H}, \mathsf{H} \mathsf{-\!\!>} \phi \mathsf{Hd}, \mathsf{DepL}, \gg \mathsf{DepH}, \mathsf{MAL}, \mathsf{DAL} \gg \mathsf{FtBin} \gg \mathsf{Align}(\mathsf{H}; \mathsf{L})$

(17) Predicted outcomes for bi-/trisyllabic stems with 0-1 tone(s)

1.
$$\sigma \sigma$$
 $(\sigma \sigma)$

2. $\frac{H}{\sigma \sigma}$ $\frac{H}{\sigma}$ \frac

7. L	L (တတ်)	C: VV	13. Η σσσ	Н (σσ) σ	C: V
8. σσσ	Η (σσ)	A: VÝ	14. L σσσ		C: V
9. σσσ	Η (σσ) σ L	A: VÝ	15. H	Н (σσ) σ	A: V
10. L σσσ	L (၀၀) ၀	C: VV	16. L	L (တတ်) တီ	C: V
11. Η σσσ	Η (σ)σ σ	B: ÝV	-		
12. L σσσ	L (σ)σ σ	D: VV	-		

Predictions of HS and SPOT and the Distribution of Accent

(18)

	A: VÝ	B: ÝV	C: VV	D: VV
SPOT	6	2	6	2
HS	6	2	4	4

- by far the most common type is A whereas class B only 'contains a relatively small number of bisyllabic stems' (Hualde et al., 2008, 4)
- → if one wants to correlate the status of being exceptional/rare to the number of different contrasts being neutralized to that form, HS allows a more fine-grained asymmetrical distribution

HS vs. SPOT

Possible positional defaults in HS

 the position of epenthetic tones, floating H- and floating L-tones can be different

Possible positional defaults in SPOT

- the position of epenthetic tones, floating H- and floating L-tones is identical
- shown in (19) with a factorial typology done with OTHelp (Staubs et al., 2010)
- all possible different default patterns (=tone needs to assign newly) for HS and SPOT where a tone results on syllable 1 or 2

Positional Defaults for Newly Associated Tones: OTHelp

(19)	HS (8 out of	282)					
` /	•	Tone			ing Tone			tion into φ
	σσ	σσσ	σσfH	σσfL	σσσfΗ	σσσfL	σσσΗ3	σσσ L3
-	H2	H2	H2	L2	H2	L2	H2	L2
	H2	H2	H2	L1	H2	L1	H2	L2
	H2	H2	H1	L2	H1	L2	H2	L2
	H2	H2	H1	L1	H1	L1	H2	L2
	L2	H2	H2	L2	H2	L2	H2	L2
	L2	H2	H2	L1	H2	L1	H2	L2
	L2	H2	H1	L2	H1	L2	H2	L2
	L2	H2	H1	L1	H1	L1	H2	L2
(20)	SPO	T (6 out	of 394)					
(20)		`		1.0	110	1.0	110	1.0
	H2	H2	H2	L2	H2	L2	H2	L2
	L2	H2	H2	L2	H2	L2	H2	L2
	H1	H1	H1	L1	H1	L1	H2	L2
	L1	H1	H1	L1	H1	L1	H2	L2
	H1	H1	H1	L1	H1	L1	H1	L1

L1

H1

L1

H1

L1

H1

Summary: PRAS in Goizueta Basque

- a HS account predicts that all imaginable underlying tonal/metrical contrasts are neutralized to one of the four attested accent patterns
- in contrast to a non-serial account, it allows to predict different defaults for epenthetic, floating L-, and floating H-tones
- these different defaults allow to capture the distribution into frequent and exceptional classes

Discussion

Summary and Discussion

- if conflicting preferences for two suprasegmental elements is resolved by serial optimization, underlying elements can be optimized earlier than inserted ones
- this predicts templatic non-local accent in Mayo
 - in spirit similar to the Lexical Phonology account in Hagberg (2006) but based on a single ranking of independently motivated phonological constraints
- and co-existence of different defaults in Goizueta Basque

References

- Breteler, Jereon (2018), A foot-based typology of tonal reassociation: Perspectives from synchrony and learnability, PhD thesis, Universiteit van Amsterdam.
- de Lacy, Paul (2002), 'The interaction of tone and stress in optimality theory', *Phonology* **19**, 1–32.
- Elfner, Emily Jane (2009), 'Syllabification and stress-epenthesis interactions in Harmonic Serialism', Ms. University of Massachusetts, Amherst.
- Elfner, Emily Jane (2016), Stress-epenthesis interactions in harmonic serialism, *in* J.McCarthy and J.Pater, eds, 'Harmonic Grammar and Harmonic Serialism', Equinox, pp. 261–300.
- Hagberg, Larry (1989), Floating accent in Mayo, in S.Fulmer, M.Ishihara and W.Wiswall, eds, 'Proceedings of the Arizona Phonology Conference 2', University of Arizona.
- Hagberg, Larry (1990), 'Stem, word and phrase as morpho-syntactic strata in Mayo', SIL Language and Culture Archives.
- Hagberg, Lawrence Raymond (2006), *An Autosegmental Theory of Stress*, SIL International.

- Haraguchi, Shosuke (1991), A theory of Stress and Accent, Foris, Dordrecht.
- Hualde, José Ignacio, Oihana Lujanbio and Francisco Torreira (2008), 'Lexical tone and stress in Goizueta Basque', *Journal of the International Phonetic Association* **38**, 1–24.
- Hyman, Larry M. (2009), 'How (not) to do phonological typology: the case of pitch-accent', *Language Sciences* **31**, 213–328.
- Hyman, Larry and Niko Kobepa (2013), 'On the analysis of tone in Mee (Ekari, Ekagi, Kapauku)', *Oceanic Linguistics* **52**, 307–317.
- Ito, Junko and Armin Mester (2009), The extended prosodic word, *in* B.Kabak and J.Grijzenhout, eds, 'Phonological domains: Universals and Derivations', Mouton de Gruyter, pp. 135–194.
- Kager, René (1999), Optimality Theory, Cambridge University Press, Cambridge.
- Köhnlein, Björn (2019), Metrically conditioned pitch accent in Uspanteko, *in* R.Goedemans, J.Heinz and H.van der Hulst, eds, 'The study of word stress and accent: theories, methods and data', Cambridge University Press, Cambridge, pp. 293–322.
- Kubozono, Haruo (1993), The Organization of Japanese Prosody, Kurosio, Tokyo.

- McCarthy, John (2008*a*), 'The gradual path to cluster simplification', *Phonology* **25**, 271–319.
- McCarthy, John (2008*b*), 'The serial interaction of stress and syncope', *Natural Language and Linguistic Theory* pp. 499–546.
- McCarthy, John (2010), 'Studying Gen', *Journal of the Phonetic Society of Japan* **13**, 3–12.
- McCarthy, John, Kevin Mullin and Brian Smith (2012), Implications of harmonic serialism for lexical tone association, *in* B.Botma and R.Noske, eds, 'Phonological explorations: Empirical, theoretical and diachronic issues', de Gruyter.
- McCawley, James (1968), *The phonological component of a grammar of Japanese*, Mouton, The Hague.
- Moore-Cantwell, Claire (2011), 'Contexts for epenthesis in Harmonic Serialism', talk, given at the 19th mfm.
- Pater, Joe (2012), Serial harmonic grammar and Berber syllabification, *in* T.Borowsky, S.Kawahara, T.Shinya and M.Sugahara, eds, 'Prosody Matters: Essays in Honor of Lisa Selkirk', Equinox.
- Pruitt, Kathryn (2012), Stress in Harmonic Serialism, PhD thesis, UMass Amherst.

- Ross, Martin John Elroy (1985), Japanese lexical phonology and morphology, PhD thesis, University of British Columbia.
- Spahr, Christopher (2016), Contrastive representations in non-segmental phonology, PhD thesis, University of Toronto.
- Staubs, Robert, Michael Becker, Christopher Potts, Patrick Pratt, John McCarthy and Joe Pater (2010), 'OT-Help 2.0. software package.', Amherst, MA: University of Massachusetts Amherst.
- Torres-Tamarit, Francesc (2012), Syllabification and Opacity in Harmonic Serialism, PhD thesis, Universitat Autonoma de Barcelona.
- Worbs, Sören (2016), 'Positionally restricted tone systems in Papuan languages', B.A. thesis, University of Leipzig.

Appendix: Additional undominated constraints in Mayo

- (21) a. RHT:I (Kager, 1999)
 Assign * for every foot with initial prominence.
 - b. ALIGN(ϕ ,L; ω ,L) Assign * for every σ that intervenes between the leftmost σ in a ϕ and the left word edge.

Appendix: Step 3, no underlying H: Convergence

(22)

Η (h i p o n) _φ n a k e	* FLтН	НРю	н<-анф	ALIGN(H;L)	FTBIN	DepH
H a. (hipon) _φ nake				*	 	
H b. (hichup) _φ nake	*!		*		 	
H c. (hi) _φ chupnake			*!		 * 	

Appendix: Step 3, underlying floating H: Convergence

(23)

Η (hi) _φ chupnake		* FLTH	НБю	н<-анф	ALIGN(H;L)	FTBIN	DEPH
r⊛ a.	Η (h i) _φ c h u p n a k e					 * 	
b.	H (h i p o n) _φ n a k e			*!		 	I I I
c.	H hi chupnake		*!				

Appendix: Mee (New Guinea, Hyman and Kobepa (2013); Worbs (2016))

- two tone patterns A+B for words of all shapes
- tonal morphology: A changes into B

(24)

		μμ	μ.μ	μμ.μ	μμ.μμ	μ.μ.μ	
-	A.	bóù	údò	gáàbò	múùmàì	áyàmù	HL(L)
		'wind'	'heavy'	'quiet'	'to finish'	'chicken'	
	B.	bóú	údó	gáátì	búúmàì	ágíyà	HH(L)
		'to skin'	'testicle'	'ten'	'to swim'	'net bag'	

Appendix: HS Account of Mee

- An underlying tone associates to the initial TBU and spreads (=all syllables want to have a tone but maximally binary spread is possible)
- Without a tone, a left-aligned binary foot is built first; a H tone is inserted into the foot head but cannot spread since it is illicit on the foot non-head
- → Morphologically determined change from A to B: A floating tone

Appendix: Steps in a Serial Account of Mee

(25)

1. Morpheme Concatenation						
Н						
a y amu	agiya					
2. Floating H-association						
H						
a y amu	agiya					
3. H-Spread						
H						
a y a m u	адіуа					
4. Foot assignment						
Η (a) _φ y a m u	(a g i) _φ y a					
5. Insertion of H on foot head						
H	H / L					
(a) _φ yamu	(agi) _φ ya					

Appendix: Account in Hagberg (2006)

- accented words have a floating stress autosegment
- linking rule links * L to R at every cycle and delinking rule delinks it at the end of every cycle
- foot building is also cyclic (=reduplication at every cycle possible)
- the delinking rule is turned off at the end of the lexical cycles: * is hence linked to leftmost stress-bearing unit for every word containing an accented stem
- postlexical stress insertion and linking inside foot R to L (=accounts for default stress on second syllable)
- → based on coexisting L-R and R-L linking rules in a single language
- → based on principles like the 'Degenerate Foot Principle' demanding that the presence of a 'lexical accent linked to any element that is being incorporated into a foot forces that foot to become degenerate' (p.19) that seem problematic from a cross-language perspective

Appendix: Further Data on Minimality-Induced Lengthening

- words are minimally bimoraic and final syllable is extrametrical phrase-finally: potential feeding of lengthening
- VL for unaccented stems (26-a), gemination for accented ones (26-b)
- (26) Phrase-final extrametricality and lengthening (Hagberg, 2006, 156+168)

	i iliase ililai	CISCWITCIC	
a.	bwiík-a	bwik-á	'sing'-Prs
	noók-a	nok-á	'speak'-Prs
b.	chúpp-na	chúp-na	'harvest'-Prs
	mákk-a	mák-a	'give'-Prs

- → preference for VL except if gemination allows to avoid shifting of H
 - for long V's, H is always on second μ ; VL for accented stems would hence result in shifting H from one μ to the other
 - for unaccented stems, the H has to shift anyway (since it can't remain on final syllable)