Serial Computation of Accent in Mayo

Eva Zimmermann UBC Vancouver

Workshop on Cyclic Optimization Leipzig, May 18th, 2018

Eva Zimmermann, Workshop on Cyclic Optimization, May 18th, 2018

- the competition between opposing phonological preferences in a serial account can follow a 'first come-first serve'-principle: Optimization of underlying elements has priority over optimization inserted default structure
- a serial optimization account allows to predict **non-local templatic accent systems** as in Mayo from the order between between foot parsing and tone association

Mayo

Mayo (Uto-Aztecan; Hagberg (1989, 1990, 2006); Hyman (2009); Spahr (2016))

- one vowel in every word is realized with a higher pitch
- (1) *Mayo accent (Hagberg, 2006, 73)*

Accented		Unaccented	
ch ú pnake b í chupnaka	'will harvest' TRNS	ponnáke	'will play' TRNS
hichuphake			
ппіспирпаке	will always harvest	пппроппаке	will always play INTR
chíknake	ʻwill sweep' Trns	wis <mark>é</mark> ka	'sawing' TRNS
hichiknake	ʻwill sweep' Inтr	hiw í seka	'sawing' INTR
h í hichiknake	ʻwill always sweep' Inтr	hih í wiseka	ʻalways sawing'

- → a non-local templatic accent system: The stem determines the stress pattern for the whole word and is not necessarily stressed itself
 - another example for such a pattern is Tagalog (Hagberg, 2006)

Stress/tone/(pitch) accent/...?

- the dilemma:
 - lexical contrast for high pitch: Prototypical tone?
 - exactly one high-pitched V which is positionally restricted to the initial two V's: Prototypical stress?
- possible solution: a special third pattern with an 'accent' mark (e.g. for Japanese McCawley (1968); Ross (1985); Haraguchi (1991); Kubozono (1993))
- another solution: 'accent' patterns always reanalyzable as tonal and/or metrical patterns (Hyman, 2009; Köhnlein, to appear)
 - Mayo is another examples where foot structure and tone assignment interact

Mayo

Feet and Tone in Mayo

• another example for well-established interaction between metrical structure and tone (e.g. de Lacy, 2002)

Harmonic Serialism Account

Serial Account in a Nutshell

Conflict: Preferred positions for a H-tone (=head of a ϕ)

- the initial V: $(hi)_{\varphi}$ ponnake
- inside an unmarked and hence bisyllabic left- aligned φ : (hichúp) $_{\varphi}$ nake

Serial Account in a Nutshell

Conflict: Preferred positions for a H-tone (=head of a ϕ)

- the initial V: $(hi)_{\varphi}$ ponnake
- inside an unmarked and hence bisyllabic left- aligned φ : (hichúp) $_{\varphi}$ nake

Underlying contrast: Stems with/without a floating H-tone

- underlying floating H-tones are associated to their preferred position before feet are built
- without a H-tone, the unmarked foot is created before a default H is inserted

Steps in a Serial Account for Mayo

Harmonic Serialism (McCarthy, 2008*a*,*b*, 2010; Elfner, 2009, 2016; Moore-Cantwell, 2011; McCarthy et al., 2012; Torres-Tamarit, 2012; Pruitt, 2012; Pater, 2012)

- GEN is restricted by **gradualness** and there is a **GEN-EVAL-Loop** that continues as long as a new step is **harmonically improving**
- possible one-step operations in the domain of feet and tone: (McCarthy et al., 2012; Breteler, 2018)
 - 1. Link a tone to a TBU
 - 2. Insert a tone and link it to a TBU
 - 3. Build a foot
 - 4. Delink a tone from a TBU

Constraints

- (4) a. ALIGN(H;L) Assign * for every TBU that intervenes between the left word edge and the leftmost TBU a tone H is associated to.
 - b. FтBin

Assign * for each ϕ that is not binary on the σ level.

- c. φHD->H (=LICENSE(MIN-R, H) (Breteler, 2018, 20)) For each MinFt, assign * if its rightmost syllable is not associated to a H tone.
- d. *FLTH Assign * for each tone not associated to a TBU.
- e. HDω (after (Ito and Mester, 2009)) Assign * for every prosodic word that does not dominate a foot.
- f. DepH

Assign * for every tone in the output without an input correspondent.

Additional undominated constraints

- (5) a. RHT:1 (Kager, 1999) Assign * for every foot with initial prominence.
 - b. ALIGN(ϕ ,L; ω ,L) Assign * for every σ that intervenes between the leftmost σ in a ϕ and the left word edge.
 - c. MaxH

Assign * for every tone in the input without an output correspondent.

Step 1, no underlying H: Foot building

(6)

hi-chupnake	* FLTH	Нрю	φHa->H	Align(H;L)	FTBIN	БерН
a. hichupnake		*!			 	
ISB b. (hichup)φnake			*		 	
c. (hi) _φ chupnake			*		, *!	

Harmonic Serialism Account

Step 2, no underlying H: Assignment of default H

(7)

(hichup) _φ nake	* FLTH	Нрю	φHa->H	Align(H;L)	FTBIN	DEPH
a. (hichup)φnake			*!		 	
⊮ ☞ b. (hichup)φnake				*	 	 *
C. Η (hichup)φnake			*!		 	 *

Step 3, no underlying H: Convergence

(8)

H (hichup) _φ nake	* FLTH	Нрю	фНр->Н	Align(H;L)	FTBIN	DepH
H ☞ a. (hichup)φ nake				*	 	
H b. (hichup) _φ nake	*!		*		 	
c. Η (hi) _φ chupnake			*!		 	

Step 1, underlying floating H: Tone association

(9)

	H hi-ponnake	*ЕстН	Нрю	φHaHφ	Align(H;L)	FTBIN	DEPH
a.	H hi ponnake	*!	*			 	
b.	Η (h i p o n) _φ n a k e	*!		*		 	
™ C.	H hi ponnake		*			 	
d.	H hi ponnake		*		*!	 	

Step 2, underlying floating H: Foot building

(10)

	H hi ponnake	*FLTH	Нрю	φHaHφ	Align(H;L)	FTBIN	DepH
a.	H hi ponnake		*!			 	
ræ b.	H (h i) _φ ponnake					 * 	
c.	H (h i p o n) _φ n a k e			*!		 	

Step 3, underlying floating H: Convergence

(11)

H (h i) _φ ponnake	* FLTH	Нрю	фНр->Н	Align(H;L)	FTBIN	DEPH
H ☞ a. (hi) _φ ponnake					 * 	
b. Η (hipon) _φ nake			*!		 	
H c. l hi ponnake		*!			 	

Summary: The 'First come-first serve'-Account

- competition between an ideally positioned H and an ideal bisyllabic foot is resolved by the order of operations, determined by a representational contrast: An underlying floating H-tone is optimized first whereas a default-H is inserted only after foot-parsing
- non-serial alternative: Constraints are sensitive to the status as being underlying/morphologically coloured or epenthetic/colourless ALIGN(H;L)_{MORPH} >> FTBIN >> ALIGN(H;L)_{EPENTHETIC}

Further Predictions and Discussion

Eva Zimmermann, Workshop on Cyclic Optimization, May 18th, 2018

Further Prediction: Default Accent in Mayo

• Spanish loans are (with very few exceptions) stressed on the second vowel

(12) Spanish Loanwords in Mayo (Hagberg, 2006, 79) Spanish Mayo

váca(s)	wakás	'cow'
cábra	kabára	'sheep'
domíngo	lomínko	'Sunday'
diós	lióh	'God'

An Independent Argument for the Assumed Foot Structure

• bimoraic reduplication: asymmetry for accented/unaccented stems if the first syllable is open

(13)	Mayo reduplication (p.135+137)							
	a.	<i>Unacceri</i> noká	nted stems: C1VC2 nok~nóka	'speak'	*non∼nóka			
	L	bwana	^bwab∼bwana					
	D.	nóka tíwe	nón∼noka tít∼tiwe	'know language' 'be ashamed'	*nók∼noka *tíw∼tiwe			

An Independent Argument for the Assumed Foot Structure

- bimoraic reduplication: asymmetry for accented/unaccented stems if the first syllable is open
- (13)Mayo reduplication (p. 135+137) Unaccented stems: C_1VC_2 a. noká nok~nóka *non∼nóka 'speak' *bwab~bwána bwaná bwan~bwána 'crv' b. Accented stems: C_1VC_1 *nók∼noka nóka nón∼noka 'know language' tíwe tít∼tiwe *tíw~tiwe 'be ashamed'
- \rightarrow the base for reduplication is a φ (Hagberg, 2006)
 - unaccented: (noká)_φ
 - accented: (nó)_φka

Richness of the Base?

Only tone-less morphemes or stems with floating H's?

Richness of the Base?

Only tone-less morphemes or stems with floating H's?

Option 1

Pre-optimization prior to concatenation excluding all possible morpheme types (Trommer, 2011).

Option 2

All possible representations result in attested forms.

RotB: All possible representations result in attested stem behaviour

(14)Underlyingly associated H's? ponnake Unmarked foot is assigned first: Behave as unaccented stems. н н (15)*More than one H?* ponnake Are neutralized to a single H due to the OCP. н Underlying φ structure? (16)(ponna)_φke Is always overwritten: DEPAL(ω - ϕ) \gg MAX ϕ . н Affixes with H? (17)hi-ponnake Are never associated: DEPAL(H- μ)_{AFFIX} \gg *FLTH.

Eva Zimmermann, Workshop on Cyclic Optimization, May 18th, 2018

Summary and Discussion

- Mayo templatic accent results from a conflicting preferences for two suprasegmental elements resolved by serial optimization (underlying: earlier optimization vs. default: later optimization)
 - in spirit similar to the Lexical Phonology account in Hagberg (2006) but based on a single ranking of independently motivated phonological constraints
- general prediction: Realization of featural affixation/floating elements can take precedence over phonological defaults
 - e.g. Southern Sierra Miwok where (one) morphological vowel lengthening affects the initial vowel that is then stressed and predictable iambic vowel lengthening affects the second vowel in the absence of underlying/morphological vowel length (Broadbent, 1964; Brown, 2003; Zimmermann, 2015)

References

- Breteler, Jereon (2018), A foot-based typology of tonal reassociation: Perspectives from synchrony and learnability, PhD thesis, Universiteit van Amsterdam.
- Broadbent, Sylvia (1964), *The Southern Sierra Miwok Language*, University of California Press.
- Brown, J.C. (2003), Floating moras and features in Southern Sierra Miwok, *in* 'Proceedings from the sixth Workshop on American Indigenous Languages'.
- de Lacy, Paul (2002), 'The interaction of tone and stress in optimality theory', *Phonology* **19**, 1–32.
- Elfner, Emily Jane (2009), 'Syllabification and stress-epenthesis interactions in Harmonic Serialism', Ms. University of Massachusetts, Amherst.
- Elfner, Emily Jane (2016), Stress-epenthesis interactions in harmonic serialism, *in* J.McCarthy and J.Pater, eds, 'Harmonic Grammar and Harmonic Serialism', Equinox, pp. 261–300.
- Hagberg, Larry (1989), Floating accent in Mayo, *in* S.Fulmer, M.Ishihara and W.Wiswall, eds, 'Proceedings of the Arizona Phonology Conference 2', University of Arizona.

- Hagberg, Larry (1990), 'Stem, word and phrase as morpho-syntactic strata in Mayo', SIL Language and Culture Archives.
- Hagberg, Lawrence Raymond (2006), *An Autosegmental Theory of Stress*, SIL International.
- Haraguchi, Shosuke (1991), A theory of Stress and Accent, Foris, Dordrecht.
- Hyman, Larry M. (2009), 'How (not) to do phonological typology: the case of pitch-accent', *Language Sciences* **31**, 213–328.
- Ito, Junko and Armin Mester (2009), The extended prosodic word, *in* B.Kabak and J.Grijzenhout, eds, 'Phonological domains: Universals and Derivations', Mouton de Gruyter, pp. 135–194.
- Kager, René (1999), Optimality Theory, Cambridge University Press, Cambridge.
- Köhnlein, Björn (to appear), Metrically conditioned pitch accent in Uspanteko, *in* R.Goedemans, J.Heinz and H.van der Hulst, eds, 'The study of word stress and accent: theories, methods and data', Cambridge University Press, Cambridge.
- Kubozono, Haruo (1993), The Organization of Japanese Prosody, Kurosio, Tokyo.
- McCarthy, John (2008*a*), 'The gradual path to cluster simplification', *Phonology* **25**, 271–319.

- McCarthy, John (2008*b*), 'The serial interaction of stress and syncope', *Natural Language and Linguistic Theory* pp. 499–546.
- McCarthy, John (2010), 'Studying Gen', *Journal of the Phonetic Society of Japan* **13**, 3–12.
- McCarthy, John, Kevin Mullin and Brian Smith (2012), Implications of harmonic serialism for lexical tone association, *in* B.Botma and R.Noske, eds, 'Phonological explorations: Empirical, theoretical and diachronic issues', de Gruyter.
- McCawley, James (1968), *The phonological component of a grammar of Japanese*, Mouton, The Hague.
- Moore-Cantwell, Claire (2011), 'Contexts for epenthesis in Harmonic Serialism', talk, given at the 19th mfm.
- Pater, Joe (2012), Serial harmonic grammar and Berber syllabification, *in* T.Borowsky, S.Kawahara, T.Shinya and M.Sugahara, eds, 'Prosody Matters: Essays in Honor of Lisa Selkirk', Equinox.
- Pruitt, Kathryn (2012), Stress in Harmonic Serialism, PhD thesis, UMass Amherst.
- Ross, Martin John Elroy (1985), Japanese lexical phonology and morphology, PhD thesis, University of British Columbia.

- Spahr, Christopher (2016), Contrastive representations in non-segmental phonology, PhD thesis, University of Toronto.
- Torres-Tamarit, Francesc (2012), Syllabification and Opacity in Harmonic Serialism, PhD thesis, Universitat Autonoma de Barcelona.
- Trommer, Jochen (2011), 'Phonological aspects of Western Nilotic mutation morphology', Habil. University of Leipzig.
- Zimmermann, Eva (2015), Templates as affixation of segment-sized units: The case of Southern Sierra Miwok, *in* E. R.und Charles E. Cairns, ed., 'The Segment in Phonetics and Phonology', Wiley Blackwell, Malden, pp. 314–336.

Appendix: Account in Hagberg (2006)

- accented words have a floating stress autosegment
- linking rule links * L to R at every cycle and delinking rule delinks it at the end of every cycle
- foot building is also cyclic (=reduplication at every cycle possible)
- the delinking rule is turned off at the end of the lexical cycles: * is hence linked to leftmost stress-bearing unit for every word containing an accented stem
- postlexical stress insertion and linking inside foot R to L (=accounts for default stress on second syllable)
- → based on coexisting L-R and R-L linking rules in a single language
- → based on principles like the 'Degenerate Foot Principle' demanding that the presence of a 'lexical accent linked to any element that is being incorporated into a foot forces that foot to become degenerate' (p.19) that seem problematic from a cross-language perspective

Appendix: Further Data on Minimality-Induced Lengthening

- words are minimally bimoraic and final syllable is extrametrical phrase-finally: potential feeding of lengthening
- VL for unaccented stems (18-a), gemination for accented ones (18-b)

(18)	Phra	ıse-final extram	etricality and	l lengthening (Ha	ıgberg, 2006,	156+168)
		Phrase-final	elsewhere			
	a.	bwiík-a	bwik-á	'sing'-Prs		
		noók-a	nok-á	ʻspeak'-Prs		
	b.	chúpp-na	chúp-na	'harvest'-Prs		
		mákk-a	mák-a	ʻgive'-Prs		

→ preference for VL except if gemination allows to avoid shifting of H

- for long V's, H is always on second μ ; VL for accented stems would hence result in shifting H from one μ to the other
- for unaccented stems, the H has to shift anyway (since it can't remain on final syllable)