The gradience of ghosts <u>M</u> An account of unstable segments

Eva Zimmermann UBC Vancouver

May 26th, 2018 mfm 26

Main Claims

(1)

	/pan <u>n</u> /	/tump/
Phonological context 1:	pan	tump
Phonological context 2:	pan <mark>k</mark> -u	tump-u

- Ghost segments are best analysed as weakly active elements.
- Ghost segments can only gradiently contribute to markedness if they surface.
- The original Gradient Symbolic Representation (Smolensky and Goldrick, 2016; Rosen, 2016) system should be modified and assume gradient activity in the output.

Gradient Symbolic Representation (=GSR; Smolensky and Goldrick, 2016)

Symbols in a linguistic representation can have **different degrees of presence** or numerical activities.

- 1. A **unified account** for various types of lexical exceptional behaviour in the phonology:
 - liaison consonants in French (Smolensky and Goldrick, 2016)
 - semi-regularity of Japanese Rendaku (Rosen, 2016)
 - allomorphy in Modern Hebrew (Faust and Smolensky, 2017)
 - lexical accent in Lithuanian (Kushnir, 2017)
 - lexical stress in Moses Columbian Salishan (Zimmermann, to appear)
 - tone sandhi in Oku (Nformi and Worbs, 2017)
 - tone allomorphy in San Miguel el Grande Mixtec (Zimmermann, 2017*a*,*b*)

Arguments for Gradient Symbolic Representation

- 2. Allows true gradience: More than a weak/strong distinction and multiple classes of differently-behaving phonological elements.
 - 6 different 'degrees' of stress preferences for morphemes in Moses Columbian Salishan (Zimmermann, to appear)
- 3. Embedded in a general **computational architecture for cognition** (=Gradient Symbolic Computation Smolensky and Goldrick, 2016)
- 4. Exceptional elements can contribute weakly to markedness.

- 1. Ghost Segments in Nuu-chah-nulth
- 2. Theoretical Account Based on Gradience
- 2.1 Theoretical Background
- 2.2 Account of Nuu-chah-nulth
- 3. Alternatives
- 3.1 Gradient Activity Only in the Input
- 3.2 Autosegmental Defectivity
- 4. Summary

Ghost Segments in Nuu-chah-nulth

Ahousaht (Kim, 2003*a*,*b*)

- one of 12 varieties of Nuu-chah-nulth (Southern Wakashan)
- spoken on Flores Island (West Coast of Vancouver Island)

Ghost segments in Ahousaht Nuu-chah-nulth (Kim, 2003b)

- some suffixes surface with their initial consonant post-vocalically (2-i) and loose it post-consonantally (2-ii)
- (2) Exceptional suffixes with unstable consonants (Kim, 2003a, 178)
 - a. i. ?atła-(q)umł two-round
 - ii. tł'is-(q)umł white-round
 - b. i. sapnir-(q)irl bread-to.make
 - ii. mamuːk^w-(q)iːl basket-to.make
 - c. i. ?u-(k)}aː-si∫ Eun-Sook it-to.be.called-1Sc.IND Eun-Sook
 - ii. k^wis-(k)łar-k'uk-?i∫ different-to.be.called-1Sg.IND

?atlagumł 'two dollars' t[‡]'isum[‡] 'sth. white and round' sapnizgizł 'to make bread' mamu:k^wi:4 'to make baskets' ?ukła:sif 'My name is Eun-Sook' k^wisła:k'uk?if 'It seems like he has a different name'

Phonological Generalization: Consonants in Nuu-chah-nulth

- a ghost consonant only surfaces if it does **not create a marked structure**
- (3) Avoidance of a coda consonant for /-∩V/ suffixes
 /V-∩V/ V.C∩V
 /VC-∩V/ V.CV *VC.C∩V
- (4) Avoidance of a cluster for /-∩CV/ suffixes
 /V-∩CV/ VC_∩CV
 /VC-∩CV/ VC.CV *VCC∩.CV

Ghost segments in Ahousaht Nuu-chah-nulth: Challenge I

- other consonant-initial suffixes retain their initial consonant in all contexts (5)
 - → idiosyncratic property of consonants in certain morphemes
- (5) *Creation of consonant sequences (Kim, 2003a, 178)*
 - a. wa?it∫-swi-?i∫ wa.?it∫s.wi.?i∫

to.sleep-beyond.normality-3Sg.IND

b. nup-q?itfh nupq.?itfh one-year(s) 'one year'

Syllables in Nuu-chah-nulth: CV(V)(C)(C)(C)(Kim, 2003a, 125ff)• obligatory onset, no onset clusters• up to three coda consonants• no sonority sequencing effect

'S/he slept in'

\bigcirc -Consonants in Nuu-chah-nulth: Challenge II

(6) $-\bigcirc V$ Suffixes

				*Coda	*CC	Max
i.	/V- <u></u> ∩V/	II a.	V.C _C V			
		b.	V.V			*!
ii.	/VC- <u>∩</u> V/	a.	VC. <mark>C</mark> ∩V	*!		
		r☞ b.	V.CV			*

*Coda **must outrank** Max_①

(7) $-\bigcirc CV$ Suffixes

				*CC	Max _∭	*Coda
i.	/V− <u></u> CV/	I® a.	V C ژ.CV			*
		b.	V.CV		*!	
ii.	/VC- <u>M</u> CV/	a.	VC <mark>C</mark> <u>∩</u> .CV	*!		*
		r≊ b.	VC.CV		*	*

Max_n must outrank *Coda

Theoretical Account Based on Gradience

Gradient Symbolic Representations and HG

- symbols in a linguistic representation can have different degrees of presence
- grammatical computation inside Harmonic Grammar (Legendre et al., 1990; Potts et al., 2010)
- any change in activity is a faithfulness violation

b ₁ a ₁ t ₁ -p _{0.5}	Max 5	
a. batp		0
b. bap	-1	-5
r≊ c. bat	-0.5	-2.5

Prediction

(8)

Elements active to a lesser degree are **easier to delete**.

Gradient Symbolic Representations in the Output (Zimmermann, 2017*a*,*b*)

- output elements can be weakly active as well
- every marked structure M violates a markedness constraint *M by the mean activity (MA)* of elements in the scope of M

(*MA= sum of activities of all its elements) number of all its elements

(9)

$b_1a_1t_1-p_{0.5}$		*CC] _σ	Dep	Max	
		3	2	1	
a.	$b_1a_1t_1p_1$	-1	-0.5		-4
b.	$b_1 a_1 t_1 p_{0.5}$	-0.75			-2.25
≌ C.	$b_1a_1t_1$			-0.5	-0.5

Prediction

Elements active to a lesser degree are not as bad a markedness problem or not as good a markedness solution.

Consonants in Nuu-chah-nulth as Weak Segments

Weak C's in Nuu-chah-nulth are weakly active $C_{0.5}$

- weakly active C's are **easier targets for deletion** and not realized if they result in a marked structure
- the ranking paradox (6)&(7) vanishes since weakly active C's are not as bad a markedness problem:
 - if a weakly active C 'pushes' a fully active C in coda position, a repair is necessary:
 /VC-∩(V) → V.CV, *VC.C∩V
 - but a weakly active C in coda-position is tolerated: $/V-\bigcirc CV/ \rightarrow VC_{\bigcirc}.CV, *V.CV$

Constraints

(10)

a. *CodA Assign -X violation for every [coda position]_{MA=X} within a syllable that is filled.

b. *CC

Assign -X violations for every pair of [adjacent consonants]_{MA=X} in the same syllable edge.

c. Full!

Assign 1-X violations for every segment in the output with activity X.

Fully Active C's: Consonant Clusters Are Created

(11)

$w_1a_1?_1i_1$ $f_1-s_1w_1i_1$	Deps	Maxs	*CC	*Coda	
	20	20	10	7	
r r r r r r r r r r r r r r r r r r r			-1	-1	-17
b. $w_1 a_1 . ?_1 i_1 t_1 . w_1 i_1$		-1		-1	-27
c. w_1a_1 ? $_1i_1$. $f_1a_1s_1$. w_1i_1	-1			-1	-27
d. $w_1 a_1 . ?_1 i. w_1 i_1$		-2			-40
e. w_1a_1 ? ₁ i. ₁ f_1a_1 .s ₁ a_1 . w_1i_1	-2				-40

(12) a.
$$Max_S \gg {}^{*}CC$$
 (a. – b.)

b.
$$DeP_S \gg *CC$$
 (a. – c.)

c.
$$2xMax_S \gg *CC + *Coda (a. - d.)$$

d.
$$2xDep_S \gg *CC + *Coda (a. - e.)$$

Weak Segments Remain Weak in the Output

(13)

$?_1a_1t_1^4a_1-q_{0.5}u_1m_1^4a_1$		Deps	Maxs	Full!	
		20	20	12	
I® a.	$?_1a_1.t_{1}a_1.q_{0.5}u_1m_1_{1}$			-0.5	-6
b.	$?_1a_1.t_1a_1.q_1u_1m_1_1$	-0.5			-10
с.	$?_1a_1.t_1a_1.u_1m_1_1$		-0.5		-10

(14) a. $Dep_S \gg Full!$ (a.-b.)

b. $Max_S \gg Full!$ (a.-c.)

$/-\bigcirc V/$ after V: Realization

(15)

$?_1a_1t_1a_1-q_{0.5}u_1m_1t_1$	Maxs	Full!	*CC	*Coda	
	20	12	10	7	
E a. $?_1a_1.t_1^1a_1.q_{0.5}u_1m_1_1$		-0.5	-1	-1	-23
b. $?_1a_1.t_1^1a_1.u_1m_1^{4_1}$	-0.5		-1	-1	-27

(16) $Max_S \gg Full!$

/- $\bigcirc V/$ after C: Not Realized to Avoid Coda

(17)

$t_{1}i_{1}s_{1}-q_{0.5}u_{1}m_{1}d_{1}$	Maxs	Full!	*CC	*Coda	
	20	12	10	7	
a. $t_{1}i_{1}s_{1}.q_{0.5}u_{1}m_{1}k_{1}$		-0.5	-1	-2	-30
$\blacksquare b. t_1^{\downarrow_1} i_1 . s_1 u_1 m_1^{\downarrow_1}$	-0.5		-1	-1	-27

(18) $0.5xFull! + *Coda \gg 0.5xMax_{s}$

/- CV/ after V: Realization (Despite Being a Coda!)

(19)

$r_1u_1 - k_{0.5} r_1ar_1$	Maxs	Full!	*CC	*Coda	
	20	12	10	7	
\mathbb{R} a. $?_1u_1k_{0.5}.4_1a_{11}$		-0.5		-0.5	-9.5
b. $?_1u_1.4_1at_1$	-0.5				-10

(20) $0.5xMax_S \gg 0.5xFull! + 0.5x^*Coda$

/– \bigcirc CV/ after C: Not Realized to Avoid Cluster

(21)

$k^{w}_{1}i_{1}s_{1}-k_{0.5}i_{1}a_{1}a_{1}$	Maxs	FULL!	*CC	*Coda	
	20	12	10	/	
a. $k_{1}^{w_{1}}i_{1}s_{1}k_{0.5}k_{1}a_{1}a_{1}$		-0.5	-0.75	-1	-20.5
\mathbf{w} b. $\mathbf{k}^{\mathbf{w}}_{1}\mathbf{i}_{1}\mathbf{s}_{1}\mathbf{k}_{1}\mathbf{a}\mathbf{x}_{1}$	-0.5			-1	-17

(22) $0.5xFull! + 0.75x^*CC \gg 0.5xMax_S$

Core of the Account: Gradient Markedness Violations

(23) $/-\bigcirc CV/: C$ realized after a V

$r_1u_1 - k_{0.5} r_1ar_1$	Maxs	Full!	*CC	*Coda	
	20	12	10	7	
\mathbb{R} a. $?_1u_1k_{0.5}.i_1ai_1$		-0.5		-0.5	-9.5
b. $?_1u_1.!_1a!_1$	-0.5				-10

$0.5 x \text{Max}_S \gg 0.5 x \text{Full}! + 0.5 x^* \text{Coda}$

(24) $/-\bigcirc V/: C$ not realized after a C

$t_1i_1s_1-q_{0.5}u_1m_1t_1$	Maxs	Full!	*CC	*Coda	
	20	12	10	7	
a. $t_1^{i_1}i_1s_1.q_{0.5}u_1m_1^{i_1}$		-0.5	-1	-2	-30
$\blacksquare b. t_1^{i_1.s_1}u_1m_1^{i_1}$	-0.5		-1	-1	-27

 $0.5xFull! + *Coda \gg 0.5xMax_S$

Alternatives

Gradient Activity only in the Input? (Smolensky and Goldrick, 2016; Rosen, 2016)

- can in principle predict patterns of 'exceptional unmarkedness' as in Nuu-chah-nulth (=deletion of weak elements is 'easier')
- the specific Nuuch pattern can not follow under the assumption that all output elements are fully active since **no distinction possible between a marked structure that is created by a weak element and a marked structure that is created because of a weak element**

Nuu-chah-nulth with Full Activity in the Output?

(25) All weak elements must be neutralized to fully active ones in the output

$?_1a_1t_1a_1-q_{0.5}u_1m_1t_1$		Maxs	Deps	
		26	20	
I® a.	$?_1a_1.t_1a_1.q_1u_1m_1_1$		-0.5	-10
b.	$?_1a_1.t_1a_1.u_1m_1_1$	-0.5		-13

vs. (Smolensky and Goldrick, 2016; Rosen, 2016) where Max_S is a rewarding constraint; no influence on the weighting paradox

Nuu-chah-nulth with Full Activity in the Output?

(26) Exceptional /-(C)V/: C not realized after C to avoid coda

$t_{1}i_{1}s_{1}-q_{0.5}u_{1}m_{1}d_{1}$	Maxs	Deps	*CC	*Coda	
	25	20	10	7	
a. $t_1i_1s_1.q_1u_1m_1_1$	-0.5		-1	-2	-34
$\mathbb{R} b. t_1^{\downarrow_1} i_1 . s_1 u_1 m_1^{\downarrow_1}$		-0.5	-1	-1	-30

$0.5xDep_S$ + *Coda $\gg 0.5xMax_S$

(27) Exceptional /-(C)CV/: C wrongly not realized after a vowel

$?_1u_1 - k_{0.5} a_1a_1$	Maxs	Deps	*CC	*Coda	
	25	20	10	7	
• a. $P_1u_1k_1.P_1ar_1$		-0.5		-1	-17
\blacksquare b. $?_1u_1.4_1a_1$	-0.5				-13

 $0.5xMax_S \gg 0.5xDep_S$ + *Coda

Autosegmental Defectivity

- ghost segments are **defective**; their phonological structure lacks material, e.g.
 - Spencer (1986) or Szypra (1992) on Polish jers: radically underspecified segmental root nodes that are devoid of any melodic features
 - Tranel (1995, 1996) on French liaison: consonants without a position on the skeletal tier
 - Faust (2013) on Modern Hebrew allomorphy: /t/ alternates with zero since its not associated to a skeletal CV-position
- a representational account that is based on independently necessary representational contrasts

Autosegmental Defectivity for Nuu-chah-nulth I (Kim, 2003a, 180)

- ghost segments=floating features lacking a segmental root node; their realization implies violating DEPRT
- context-specific DEPRT is sensitive to whether the inserted root node is preceded by a vowel or a consonant

(28)

?u− ^k ła:	Dep _{Rt(C_)}	Max _{Subs}	Dep _{Rt(V_)}
r≊a. ?uk.ła:			*
b. ?u.ła:		*!	

b.

a.

tłis− ^q umł	Dep _{Rt(C_)}	Max _{Subs}	Dep _{Rt(V_)}
a. tłis.qumł	*!		
r≊ b. tłi.sumł		*	

Autosegmental Defectivity for Nuu-chah-nulth I: Discussion

- **problematic context-sensitivity** for faithfulness, crucially different from positional faithfulness (Beckman, 1998)?
- correlation to markedness avoidance is purely coincidental, Nuu-chah-nulth' (29) is equally well possible
- (29) Factorial Typology: Nuu-chah-nulth'

?u− ^k ła	az	Dep _{Rt(V_)}	Max _{Subs}	Dep _{Rt(C_)}
a.	?uk.łaː	*!		
r≊ b.	?u.ła:		*!	

b.

a.

tłis- ^q umł	Dep _{Rt(C_)}	Max _{Subs}	Dep _{Rt(V_)}
r≊ a. tłis.qumł			*
b. t∳i.sumł		*	

Autosegmental Defectivity for Nuu-chah-nulth II

- ghost segments are defective and remain defective in the output
- *Coda only 'sees' non-defective segments

tłis-qumł*CodaMaxsFULLSPEC!a. tłis.qumł*!*Image: b. tłi.sumł*

b.

a.

(30)

?u− ^k ła	ar	*Coda	Max_S	FullSpec!
¤≊ a.	?u ^k .łaz			*
b.	?u.ła:		*!	

Autosegmental Defectivity for Nuu-chah-nulth II

- What is this 'defectivity'?
 - Underspecification for place, articulatory features,... not trivially possible since <u>C</u>-consonants contrast (q, k, j,...)
 - Lack of a root node What then is the motivation/point of the root node to begin with if segments are happy without it?
- *Coda does not 'see' those defective C's but *CC has to (31)
 - → arbitrary split of all markedness constraints into two sets (one seeing all segments, the other ignoring an arbitrary class of them)

(3	1)
`		1

k ^w is- ^k ła:	*Coda	*CC	Maxs	FullSpec!
a. k ^w is. ^k ła:	*	*!		*
r≊b. k ^w is.łaz	*		*	

Summary

Summary

- strengthened the argument for Gradient Symbolic Representations in showing that the typology of predicted lexical exceptions straightforwardly includes ghost segments
- showed that gradient markedness contribution is attested in the case study of ghost segments in Nuu-chah-nulth
- argued for Gradient Symbolic Representations in the Output
- showed that gradient markedness contributions naturally fall out from gradient activity but remain challenging under an autosegmental defectivity account

References

- Beckman, Jill (1998), Positional Faithfulness, PhD thesis, University of Massachusetts at Amherst.
- Faust, Noam (2013), 'Decomposing the feminine suffixes of Modern Hebrew', *Morphology* **23**, 409–440.
- Faust, Noam and Paul Smolensky (2017), 'Activity as an alternative to autosegmental association', talk given at mfm 25, 27th May, 2017.
- Kim, Eun-Sook (2003*a*), Theoretical issues in Nuu-chah-nulth phonology and morphology (British Columbia), PhD thesis, The University of British Columbia.
- Kim, Eun-Sook (2003*b*), *Theoretical issues in Nuu-chah-nulth phonology and morphology* (*British Columbia*), UMI, Ann Arbor, MI.
- Kushnir, Yuriy (2017), 'Accent strength in Lithuanian', talk, given at the workshop on Strength in Grammar, Leipzig, November 12, 2017.
- Legendre, Geraldine, Yoshiro Miyata and Paul Smolensky (1990), 'Harmonic grammar a formal multi-level connectionist theory of linguistic well-formedness: Theoretical foundations', *Proceedings of the 12th annual conference of the cognitive science society* pp. 388–395.
- Nformi, Jude and Sören Worbs (2017), 'Gradient tones obviate floating features in Oku tone sandhi', talk, given at the workshop on Strength in Grammar, Leipzig, November 10, 2017.

- Potts, Christopher, Joe Pater, Karen Jesney, Rajesh Bhatt and Michael Becker (2010), 'Harmonic grammar with linear programming: From linear systems to linguistic typology', *Phonology* pp. 77–117.
- Rosen, Eric (2016), Predicting the unpredictable: Capturing the apparent semi-regularity of rendaku voicing in Japanese through harmonic grammar, *in* E.Clem, V.Dawson, A.Shen, A. H.Skilton, G.Bacon, A.Cheng and E. H.Maier, eds, 'Proceedings of BLS 42', Berkeley Linguistic Society, pp. 235–249.
- Smolensky, Paul and Matthew Goldrick (2016), 'Gradient symbolic representations in grammar: The case of French Liaison', *ROA 1286*.
- Spencer, Andrew (1986), 'A non-linear analysis of vowel-zero alternations in Polish', *Journal of Linguistics* 22, 249–280.
- Szypra, Jolanta (1992), 'Ghost segments in nonlinear phonology: Polish yers', *Langage* pp. 277–312.
- Tranel, Bernard (1995), The representation of French final consonants and related issues, in J.Amastae, G.Goodall, M.Phinney and M.Montalbetti, eds, 'Contemporary Research in Romance Linguistics: Papers from hte XXII Linguistic Symposium on Romance Languages'.

- Tranel, Bernard (1996), Exceptionality in optimality theory and final consonants in French, in K.Zagona, ed., 'Grammatical Theory and Romance Languages: Selected papers from the 25th Linguistic Symposium on Romance Languages (LSRL XXV)', John Benjamins, Amsterdam, pp. 275–291.
- Zimmermann, Eva (2017*a*), 'Being exceptional is being weak: tonal exceptions in San Miguel el Grande Mixtec', poster, presented at AMP 2017, New York, September 16, 2017.
- Zimmermann, Eva (2017*b*), 'Gradient symbols and gradient markedness: a case study from Mixtec tones', talk, given at the 25th mfm, 27th May, 2017.
- Zimmermann, Eva (to appear), 'Gradient symbolic representations in the output: A case study from Moses Columbian Salishan stress', *Proceedings of NELS 48*.