Gradient symbols and gradient markedness: A case study from Mixtec tones

Eva Zimmermann Leipzig University May 27th, 2017 mfm 25

UNIVERSITÄT LEIPZIG

Main Claim

Lexical exceptions to phonological processes follow from **Gradient Symbolic Representations**

(Smolensky and Goldrick (2016), Rosen (2016), Faust&Smolensky (this morning))

gradience not only for segmental alternations but also for exceptions in the autosegmental phonology: a case study of morphological tone

Extending the original GSR claim, I argue that:

Phonological representations remain gradient in the output: consequences for the evaluation of markedness constraints

- 1. Exceptional Tones in MIG
- 2. Analysis
- 2.1 Theoretical Background
- 2.2 Analysis: Avant
- 2.3 Analysis I: Exceptional non-hosts
- 2.4 Analysis II: Allomorphy for /jo/ro/
- 3. Summary and Conclusion

Exceptional Tones in MIG

Background: MIG (Pike, 1944, 1948; Mak, 1950; Hollenbach, 2003; McKendry, 2013)

- San Miguel el Grande Mixtec (=MIG) is a variety of Mixtec (Otomanguean), spoken in Southern Mexico
- three level tones: H (=á), M (=a), L (=à)
- ** sequences of two tones only possible on long vowels: μ is the TBU and no true contour tones
- (nasalization is a feature of morphemes (Marlett, 1992), notated as /<u>CVCV</u>/)

Tone 'perturbation' in MIG

- common in Mixtec: 'perturbing' morphemes that trigger a tonal change on a following morphemes (Dürr, 1987; Hollenbach, 2003)
- autosegmental account: floating tones (Goldsmith, 1990; Tranel, 1995a,b)
- (1) *MIG: Floating H-tones*

(Mak, 1950; McKendry, 2013)

Morpheme 1			Morphe	me 2	Surface		
a.	kəbà ^(H)	'day'	biko	'fiesta'	kəbà bíko	M:83	
b.	ⁿ deju ^(H)	'food'	bà?a	'good'	ⁿ deju bá?a	M:83	
c.	k ^w a?à ^(H)	'many'	sùʧí	'children'	k ^w a?à súʧí	M:83	
d.	∫ <u>iní</u> (H)	'head'	<u>tjì?í</u>	'skunk'	∫ <u>iní</u> ʧí?í	McK:85	
e.	nuù ^(H)	'face'	nuʧi ^(H)	'beans'	nuù núʧi	McK:84	
f.	β <u>áá^(H)</u>	Емрн	-ti̇̀ ^(H)	3.Anim	β <mark>áát</mark> i	McK:92	

Challenge 1: Exceptional non-hosts

- some morphemes are exceptional non-hosts for a preceding floating H-tone if the preceding morpheme ends in H; an example is /-ðe/ 3.MHon (2-a-c) (Pike, 1948, 91)
- (2-d+e) show that this is not a regular phonological ban on *HH: other morphemes host floating H's and create such tone sequences
- (2) Exceptional non-host for floating H

(McKendry, 2013)

	Morphei	me 1	Morph	neme 2	Surface		
a.	nuʧi ^(H)	'bean'	-ðe	3.MHon	nuʧiðé	McK:92	
b.	jee ^(H)	'eat'	-ðe	-ðe 3.MHon		McK:104	
c.	β <u>áá</u> (H)	Емрн	-ðe	3.MHon	β <u>áá</u> ðe	McK:92	
d.	β <u>áá</u> (H)	Емрн	-ti̇̀ ^(H)	3.Anim	β <u>áá</u> tɨ́	McK:92	
e.	∫ <u>iní</u> (H)	'head'	<u>ťì?í</u>	'skunk'	∫ <u>iní</u> ʧí?í	McK:85	

Challenge 2: Exceptional tone allomorphs

surface forms for /-jo/ 1.INCL and /-ro/ 2 alternate between H, M, and L depending on the preceding morpheme

(3) Surface realizations of /jo/ro/

(Pike, 1948; McKendry, 2013)

	Precedi	ing morpheme	Surface			
a.	hinì	'know'	hinìjò	L	McK:93	
b.	sá?a	'make'	sá?ajó	Н	McK:93	
c.	kunu	ʻrun'	kunujó	Н	P:90	
d.	kee ^(H)	'eat'	keero	Μ	P:91	

Challenge 2: Exceptional tone allomorphs

(4) Surface realizations of /jo/ro/: Summary

(McKendry, 2013, 93)

follo	wing	Surface
R1.	L#	L
R2.	H#	L
R3.	L (H)#	L
R4.	M (H)#	M
R5.	M#	Н
R6.	H (H)#	Н

Analysis

Theoretical Background

Weak activation in phonology

Gradient Symbolic Representations

(Smolensky and Goldrick, 2016; Rosen, 2016)

- symbols in a linguistic representation have numerical degrees of presence or activity; can be weakly active
- all output elements are discrete and fully active
- proposed modification: Gradient Symbolic Representations in the Output (=GSRO) where output elements can be/remain weakly active
 - consequences for the evaluation of markedness constraints
 - neutralization to desired fully active element penalized by standard faithfulness: interaction with other unfaithful operations
- grammatical computation inside Harmonic Grammar (Legendre et al., 1990; Potts et al., 2010)

Weak activity in the output: Markedness constraints

violated by the number

M! that the desired structure lacks to activity 1.0. (=weaker elements don't fulfill them as good)

*M that the penalized structure is active. (=weaker elements don't violate them as bad)

Weak activity in the output: Markedness constraints

- (5) a. Ons!: Assign violation 1-X for every σ with an onset of activity X.
 - b. *CC: Assign violation X for a CC in a syllable margin where X is the highest activity that both C share.
- (6) Toy example: weak activation and HG constraint evaluation

u ₁ k _{0.6} t _{0.7}	Ons!	*CC	
	20	10	
a. u ₁ k _{0.6} t _{0.7}	-1	-0.6	-26
№ b. k _{0.6} u ₁ t _{0.7}	-0.4		-8
c. ? ₁ u ₁ k ₁ t ₁		-1	-10

Weak activity in the output: Faithfulness constraints

any change in activity is a faithfulness violation

- (7) a. MAXS: Assign violation X for any segmental activity X in the input that is not present in the output.
 (vs. rewarding MAX (Smolensky and Goldrick, 2016; Rosen, 2016))
 - b. DEPS: Assign violation X for any segmental activity X present in the output but not in the input.

(8) Toy example: weak activation and HG constraint evaluation

р	₁ a ₁ k _{0.6}	Max	DEP	*Coda	
		3	2	1	
™ a.	$p_1a_1k_{0.6}$			-0.6	-0.6
b.	p ₁ a ₁ k ₁		-0.4	-1	-1.8
c.	p_1a_1	-0.6			-1.8
d.	$p_1a_1k_{0.6}a_1$		-1		-2

A typology of lexical exceptions predicted by GSRO

Exceptional morphemes=contain weakly active elements

	1)	Weak elements are only realized
0		A) with lexical support → Smolensky and Goldrick (2016); Rosen (2016)
GSR/O		(e.g. Japanese Rendaku (Rosen, 2016))
0		B) with phonological support (e.g. Catalan /u/-alternation (Bonet et al., 2007))
20	2)	Weak elements avoided in marked environments → Faust&Smolensky (t.m.)
SSF		(e.g. Nuuchahnulth unstable consonants (Kim, 2003))
_	3)	Weak output elements are
only		A) avoided since not a good enough solution → This talk
		(e.g. S.M.G. Mixtec weak tonal hosts (McKendry, 2013))
GSRO		B) realized since not a bad enough problem
		(e.g. Yine non-deleting /-wa/ (Pater, 2006))
20	4)	Elements of different activities compete for realization
3SR/		(e.g. stress in MC. Salish (Czaykowska-Higgins, 1993))

Analysis: Avant

Floating tones: Overwriting

- in MIG, floating tones are never deleted (=highest weight for MAXFL)
- there are no contour tones in MIG (9-d): floating tone association results in overwriting
- (9)MaxT: Assign violation X for any tonal activity X in the input that is a. not present in the output. (Yip, 2002)
 - MAXFL: Assign violation X for any activity X of a floating tone in the b. input that is not present in the output. (Wolf, 2007)
 - $T>\mu$: Assign 1-X violations for every tone where X is the activity of C. TBU's this tone is associated to. (Wolf, 2007)
 - *Cont: Assign X violations for every TBU associated to tones T₁ and d. T_2 where X is the highest activity that T_1 and T_2 share. (Yip, 2002)

Overwriting

(10)

L ₁ Η μ ₁	1 +	M ₁ μ ₁		MAXFL 200	CONT 200	<u>⊼</u> 60	10 MAXT	
a.	L_1 μ_1	H ₁	Μ ₁ μ ₁			-1		-60
b.	$\begin{matrix} L_1 \\ \mu_1 \end{matrix}$		$M_1 \ \mu_1$	-1			-1	-210
c.	$\begin{matrix} L_1 \\ \mu_1 \end{matrix}$	H ₁	μ_1		-1			-200
r⊛ d.	L ₁ μ ₁		Η ₁ μ ₁				-1	-10

Analysis I: Exceptional non-hosts

Analysis for exceptional non-hosts in a nutshell

- some μ's have an activity lower than 1: they are weak hosts for a floating tone since they don't avoid a T>μ violation fully
- floating H association and preceding H-toned TBU violate the OCP association to a weak host is not a good enough reason to tolerate this

Analysis for weak hosts: Further constraints

- positional faithfulness constraint (11-b) penalizes new associations of morpheme-final tones (=becomes crucial later)
- (11)OCP: Assign X violations for every pair of adjacent H-tones where X a. is the highest activity that both share.
 - DEP|FIN: Assign violation 1 for every epenthetic association between a b. TBU and a tone that is morpheme-final.
 - Cf. Krämer (2003); Barnes (2008) on final syllable prominence effects
 - faithfulness constraint other than Max/DEP are not scaled to activation (Smolensky and Goldrick, 2016, 17)

Floating H associates to a strong host: OCP irrelevant

ⁿ deju ^(H)	'food'	bà?a	'good'	ⁿ deju bá?a	M:83
∫ <u>iní</u> (H)	'head'	<u>tfì?í</u>	'skunk'	∫ <u>iní</u> ʧ <u>í?í</u>	McK:85

(12)

H ₁ H ₁ L ₁	MAXFL 000	n' ∠ 60	OEP FIN	10 OCP	10 MAXT	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-1				-60
H ₁ H ₁ H ₁			-1	-1	-1	-39

Floating H associates to a weak host: No OCP-violation

(山)					
10.(D)		I ×		10.×1	
nuffit /	'haan'	-00	3 MHON	nuffide	McK-02
nuʧi ^(H)	Dean	00	3./VII IUN	Huyloc	MICINIDE
· ·					

(13)

M ₁ Η μ ₁	H ₁ +	M ₁ μ _{0.5}		MAXFL 200	<u>π</u> . Δ	OEP FIN	0CP	10	
a.	M ₁ μ ₁	H ₁	$M_1 \mid \mu_{0.5}$		-1				-60
☞ b.	M ₁ μ ₁		H ₁ μ _{0.5}		-0.5	-1		-1	-59

(14)

H ₁ H ₁ M ₁	200	n. △ 60	DEP FIN	10 10	TXW 10	
H ₁ H ₁	0.5	-1				-60
H ₁ H ₁ b. μ ₁ μ ₀	5	-0.5	-1	-1	-1	-69

Weak Hosts: Threshold effects

(15)

Weight of

is greater than

the weight of

$$\gg$$

$$Dep|_{Fin} + OCP + MaxT$$

$$Dep|_{Fin} + OCP + MaxT$$

$$0.5xT>\mu$$

Analysis II: Allomorphy for /jo/ro/

Analysis for /jo/ro/ in a nutshell

(16)

follo	wing	Surface
R1.	L#	L
R2.	H#	L
R3.	L (H)#	L
R4.	M (H)#	M
R5.	M#	Н
R6.	H (H)#	Н

(17) Representation for /jo/ro/:

the TBU of /ro/jo/ is associated to both a weakly activated L and a weakly activated H

(Cf. the French liaison analysis in Smolensky and Goldrick (2016): different 'allomorphs' are all (weakly) activated and part of the same underlying representation)

Preference for realizing L_{0.6}

- only one tone can be realized: no contour tones in MIG (*CONT = 200) (vs. 'blend structures' in Smolensky and Goldrick (2016))
- realization of $L_{0.6}$ is preferred since it has a higher activity: lower number of Spec (18) and MaxT violations arise
- (18)SPEC: Assign 1-X violations for every TBU where X is the tonal activity associated to this TBU. (Yip, 2002)

Preference for realizing L_{0.6}

(19)

H ₁	+	200	OF SPEC	Tx W	
a.	H ₁ L _{0.6} H _{0.5}	-0.5			-100
เ⊛ b.	$egin{array}{cccc} H_1 & L_{0.6} \ & & \ \mu_1 & & \mu_1 \end{array}$		-0.4	-0.5	-33
c.	$egin{array}{cccc} H_1 & H_{0.5} \\ & & \\ \mu_1 & & \mu_1 \end{array}$		-0.5	-0.6	-41

Ban on ML makes L impossible

- realization of L_{0.6} impossible for bases ending in M due to (20)
- (underlying sequences of ML are preserved: other strategies (deletion and tonal underspecification, deletion and spreading,... are excluded by higher-weighted constraints; cf. Appendix)

*ML: Assign X violations for every sequence of tone M followed by tone L where X is the highest activity that both share.

Ban on ML makes L impossible

(21)

M ₁ μ ₁	+ \	H _{0.5}	200	70 SPEC	₩ * 15	TxwW 10	
a.	M ₁ μ ₁	L _{0.6} H _{0.5}	-0.5		-0.6		-109
b.	M ₁ μ ₁	L _{0.6} μ ₁		-0.4	-0.6	-0.5	-42
I® C.	M ₁ μ ₁	Η _{0.5} μ ₁		-0.5		-0.6	-41

Providing /jo/ro/ with a fully active tone?

- floating H's can not be realized on /jo/ro/: H's can't associate to TBU's that were underlyingly already H (22-a)
- **spreading** of a preceding tone violates (22-b)
- DEP|HH: Assign a violation 1 for every new association between a H (22)a. that is unassociated in the input and a TBU if the TBU was underlyingly associated to a H.
 - b. *LNGT: Assign * for every tone phonetically associated to more than one TBU. (Yip, 2002)

Spreading of a stem-tone

(23)

M ₁ μ ₁	H ₁ + L _{0.6} H ₀ μ_1	1.5	Н <u>Н</u> ОСР 200	O SPEC	L _{NC} T _*	Txw M	
a.	M ₁ H ₁ μ ₁	L _{0.6}		-0.4		-0.5	-33
b.	M ₁ H ₁ μ ₁	H _{0.5} μ ₁		-0.5		-0.6	-41
© C.	M ₁ H ₁ μ ₁	μ1			-1	-1.1	-26
d.	M ₁ μ ₁	H ₁ μ ₁	-0.5			-1.1	-111

No spreading for stem-final tones

- in the absence of a floating H, stem-final tones are prevented from spreading by $Dep|_{Fin}$ (cf. (11-b)): only tones that are not the rightmost in the tonal melody of a morpheme can spread
- DEP|FIN: Assign violation 1 for every epenthetic association between a (24)TBU and a tone that is morpheme-final.

No spreading for stem-final tones

(25)No spreading without a floating tone

M ₁ μ ₁	μ ₁ μ ₁			OEP FIN	₩ * 15	L _{NG} T *	10	
a.	M ₁ μ ₁	L _{0.6}	-0.4		-0.6		-0.5	-42
r≊ b.	Μ ₁ μ ₁	Η _{0.5} μ ₁	-0.5				-0.6	-41
c.	μ_1	μ ₁		-1		-1	-1.1	-45

Summary of the analysis

$$L_{0.6}$$
 $H_{0.5}$

(26)

A. Sp	A. Spreading of non-final stem tone possible								
R3.	L (H)#	L	L_1 H_1 μ_1 μ_1						
R4.	M (H)#	М	M_1 H_1 μ_1 μ_1						
R6.	H (H)#	Н	H ₁ H ₁						

C. Spreading of stem-final tone impossible									
R1.	L#	L	L ₁ L _{0.6}						
R2.	H#	L	H ₁ L _{0.6}						
R5.	M#	Н	M ₁ H _{0.5}						

Alternation of /ro/jo/: Gang effect

(27)

Weight of

is greater than

the weight of

0.4xSpec

 \gg

*LngT + 0.6xMaxT

 $Dep|_{Fin} + *LngT + 0.6xMaxT$

 \gg

0.4xSpec

And DEP|FIN is less important than SPEC (cf. (15))

Summary of the analysis

All weights (28)

MAXFL	*Cont	ДеР нн	SPEC	Τ>μ	Dep Fin	*ML	*LNGT	OCP	MAXT
200	200	200	70	60	19	15	15	10	10

constraint weights checked with OTHelp (Staubs et al., 2010) (and manipulated by hand; e.g. taken times 10 for aesthetical reasons: integers result)

Summary and Conclusion

- strengthened argument for GSR: new case study for tonal alternations; adding gradience to autosegmental elements
- a unified account for two exceptions of MIG tonology that haven't received any theoretical account
- extended original GSR proposal in assuming gradience in the output:
 - phonologically predictable alternations of type 3 predicted: weak output elements are avoided since they are not a good enough solution ($\mu_{0.5}$ for T> μ and L_{0.6}/H_{0.5} for SPEC)
 - ? phonetic effects for weak elements
 - ? strengthening to full element: interaction with 'normal' epenthesis predicted

References

- Barnes, Jonathan (2008), Strength and Weakness at the Interface: Positional Neutralization in Phonetics and Phonology, de Gruyter Mouton, Berlin, Boston.
- Bonet, Eulàlia, Maria-Rosa Lloret and Joan Mascaró (2007), 'Allomorph selection and lexical preferences: Two case studies', *Lingua* **117**(6), 903–927.
- Czaykowska-Higgins, Ewa (1993), 'Cyclicity and stress in Moses-Columbia Salish (Nxa'amxcin)', *Natural Language and Linguistic Theory* **11**, 197–278.
- Dürr, Michael (1987), 'A preliminary reconstruction of the Proto-Mixtec tonal system', *Indiana* **11**, 19–61.
- Goldsmith, John, ed. (1990), *Autosegmental and Metrical Phonology*, Oxford: Blackwell.
- Hollenbach, Barbara (2003), The historical source of an irregular Mixtec tone-sandhi pattern, *in* M. R.Wise, T.Headland and R.Brend, eds, 'Language and life: essays in memory of Kenneth L. Pike', SIL international, Dallas, pp. 535–552.
- Kim, Eun-Sook (2003), *Theoretical issues in Nuu-chah-nulth phonology and morphology (British Columbia)*, UMI, Ann Arbor, MI.

- Krämer, Martin (2003), 'What is wrong with the right side? edge (a)symmetries in phonology and morphology', Unpublished paper. University of Ulster. Available on Rutgers Optimality Archive, ROA-576.
- Legendre, Geraldine, Yoshiro Miyata and Paul Smolensky (1990), 'Harmonic grammar a formal multi-level connectionist theory of linguistic well-formedness: Theoretical foundations', *Proceedings of the 12th annual conference of the cognitive science society* pp. 388–395.
- Mak, Cornelia (1950), 'A unique tone perturbation in Mixteco', *International Journal of American Linguistics* **16**, 82–86.
- Marlett, Stephen A. (1992), 'Nasalization in Mixtec languages', *International Journal of American Linguistics* **58**, 425–435.
- McKendry, Inga (2013), Tonal Association, Prominence and Prosodic Structure in South-Eastern Nochixtlán Mixtec, PhD thesis, University of Edinburgh.
- Pater, Joe (2006), The locus of exceptionality: Morpheme-specific phonology as constraint indexation, *in* L.Bateman, M.O'Keefe, E.Reilly and A.Werle, eds, 'Papers in Optimality Theory III', GLSA, Amherst, MA, pp. 259–296.
- Pike, Kenneth L. (1944), 'Analysis of a Mixteco text', *International Journal of American Linguistics* **10**, 113–138.

- Pike, Kenneth L. (1948), *Tone languages*, University of Michigan Press, Ann Arbor, MI.
- Potts, Christopher, Joe Pater, Karen Jesney, Rajesh Bhatt and Michael Becker (2010), 'Harmonic grammar with linear programming: From linear systems to linguistic typology', *Phonology* pp. 77–117.
- Rosen, Eric (2016), Predicting the unpredictable: Capturing the apparent semi-regularity of rendaku voicing in Japanese through harmonic grammar, *in* E.Clem, V.Dawson, A.Shen, A. H.Skilton, G.Bacon, A.Cheng and E. H.Maier, eds, 'Proceedings of BLS 42', Berkeley Linguistic Society, pp. 235–249.
- Smolensky, Paul and Matthew Goldrick (2016), 'Gradient symbolic representations in grammar: The case of French Liaison', *ROA 1286*.
- Staubs, Robert, Michael Becker, Christopher Potts, Patrick Pratt, John McCarthy and Joe Pater (2010), 'OT-Help 2.0. software package.', Amherst, MA: University of Massachusetts Amherst.
- Tranel, Bernard (1995*a*), On the status of universal association conventions: Evidence from Mixteco, *in* J.Ahlers, L.Bilmes, J.Guenter, B.Kaisse and J.Namkung, eds, 'Proceedings of BLS 21', pp. 299–312.
- Tranel, Bernard (1995b), 'Rules vs. constraints: a case study', ROA-72.

Wolf, Matthew (2007), For an autosegmental theory of mutation, *in* L.Bateman, M.O'Keefe, E.Reilly, and A.Werle, eds, 'UMOP 32: Papers in Optimality Theory III', GLSA, Amherst, MA, pp. 315-404.

Yip, Moira (2002), Tone, Cambridge University Press.

Eva.Zimmermann@uni-leipzig.de