Morphological asymmetries as a result of cyclic optimization: Hidatsa as an argument for Harmonic Layer Theory

> Eva Zimmermann, Leipzig University mfm, May 25-27th, 2023

• The tone system of Hidatsa shows an interaction of **morpheme-specific** effects and seemingly requires different grammars for different levels (word vs. phrase) and constructions (words vs. compounds).

- The tone system of Hidatsa shows an interaction of **morpheme-specific** effects and seemingly requires different grammars for different levels (word vs. phrase) and constructions (words vs. compounds).
- I argue that all these asymmetries fall out within a cyclic model of phonology where phonological elements have a certain activity that can gradiently differ.

- The tone system of Hidatsa shows an interaction of **morpheme-specific** effects and seemingly requires different grammars for different levels (word vs. phrase) and constructions (words vs. compounds).
- I argue that all these asymmetries fall out within a cyclic model of phonology where phonological elements have a certain activity that can gradiently differ.
- In such a system, **lexical activity** differences of certain tonal morphemes and predictable **activity adjustments across layers** interact.

- The tone system of Hidatsa shows an interaction of morpheme-specific effects and seemingly requires different grammars for different levels (word vs. phrase) and constructions (words vs. compounds).
- I argue that all these asymmetries fall out within a cyclic model of phonology where phonological elements have a certain activity that can gradiently differ.
- In such a system, **lexical activity** differences of certain tonal morphemes and predictable **activity adjustments across layers** interact.
- → a single phonological grammar across layers and without reference to specific morphemes predicts the complex system

1. Data: Tone in Hidatsa

The language

- Siouan language of North Dakota, spoken by ${\sim}100$ people
- all data from Park (2012)

The language

- Siouan language of North Dakota, spoken by ${\sim}100$ people
- all data from Park (2012)

Hidatsa tone

• a single H-toned mora in each word that can occur in any position ($\sim ` {\tt accent}')$

The language

- Siouan language of North Dakota, spoken by ${\sim}100$ people
- all data from Park (2012)

Hidatsa tone

- a single H-toned mora in each word that can occur in any position ($\sim ` {\tt accent}')$
- roots have a lexically contrastive H-tone on the non-final mora $(\mathsf{R}_{\mathsf{NF}})$ or on a final one $(\mathsf{R}_{\mathsf{F}})$

The language

- Siouan language of North Dakota, spoken by ${\sim}100$ people
- all data from Park (2012)

Hidatsa tone

- a single H-toned mora in each word that can occur in any position ($\sim\text{`accent'})$
- roots have a lexically contrastive H-tone on the non-final mora $(\mathsf{R}_{\mathsf{NF}})$ or on a final one $(\mathsf{R}_{\mathsf{F}})$
- affixes either bear a H-tone on any mora (AH), are tone-less (ø), or demand a H-tone on an adjacent syllable (AP)

The language

- Siouan language of North Dakota, spoken by ${\sim}100$ people
- all data from Park (2012)

Hidatsa tone

- a single H-toned mora in each word that can occur in any position ($\sim\text{`accent'})$
- roots have a lexically contrastive H-tone on the non-final mora $(\mathsf{R}_{\mathsf{NF}})$ or on a final one $(\mathsf{R}_{\mathsf{F}})$
- affixes either bear a H-tone on any mora (AH), are tone-less (ø), or demand a H-tone on an adjacent syllable (AP)
- → competition between different underlying H-tones

The challenge in a nutshell

(1)

H-tone competition	Nonfinality?	
leftmost	yes	
dominance		
leftmost	yes	
rightmost final		
leftmost	no	
	dominance leftmost rightmost final	

H-tone competition: Roots and affixes

If multiple H-tones are present in a word, only the **leftmost** H-tone that is **not on the final mora of a root** is realized.

Some suffixes are **dominant** and cause a H-tone on a preceding syllable, overriding the LMost preference.

- (2) Affixes and R_{NF}: Leftmost H-tone surfaces
 - a. nácaagic ná-cáàgic 2sg-mourn, 73 AH - R_{NF}
 - c. náree?iic ná-néè-îì-c 2a-go-hab.sg-decl, 173 AH - R_{NF} - AH

- b. bu?áà?ii bu?éè-ø-íí smoky-cont-intens, 230 R_{NF} - AH
- d. maacáàgic maa-cáàgic 1sg-mourn, 73 ø- R_{NF}

Roots and affixes II

- (3) Affixes and R_F : Final root H-tone only if no other H-tone present
 - a. xiiba?íí xiibí-ø-íí wrinkled-cont-intens, 229 R_F - AH
 - c. marígusgii ma-ní-gú?-sgíí 1a-2b-give-mit, 234 ø- AH - R_F - AH

- b. maceeríwa macéé-rí-wa man-erg-indef, 41 R_F - AH -ø
- d. macééwa macéé-wa man-indef, 41 R_F -ø

- (4) Momentaneous suffix /-^Hhi/: stem-final H-tone (Park, 2012, 42+191)
 - a. nuwiiráhic núwiiri- ´hi-c twist-mom-decl R_{NF} - AP -ø
 - c. naraaháhi? ná-néè-<u>´hi</u>-? ^{2a-go-mom-inter} AH - RA_{NF} - AP -ø

 b. mahááhiwic ma-héè-<u>´hi</u>-wi-c 1a-do-mom-1fut-decl ø- RA_{NF} - AP -ø-ø

(5)	2.poss prefix /n ^H -/: stem-initial H (Park, 2012, 344)					
	3.poss	1.poss	2.poss			
	áàci	máàci	náàci	'breasts'		
	aasí	maasí	n <mark>á</mark> àsi	'horn'		
	ahgúxi	mahgúxi	n <mark>á</mark> hgúxi	'ear'		
	iicagí	miicagí	n î icagi	'cane'		

AP - R_{NF}

Tone competition: Compounds

The leftmost non-final H-tone is realized.

If all H-tones are final, the **rightmost** one is realized.

2-member-compounds

(6)

- a. úùwihsi úùwi + íhsi 'clay + container', 316 R_{NF} R_{NF}
- c. miriwáàhdii mirí + máàhdii 'water + vehicle', 40 R_F R_{NF}

- b. céésiihsa céésa + iihsá 'wolf + his.tooth',316 R_{NF} R_{NF}
- d. naxbichaadí naxbichí + aadí 'bear + his house' RF RF

3-member-compounds

(7)

- a. icúùwasgiidihsi icúùwasga + iidá + íhsi 'horse his.face container', 316 [R_{NF} [R_F R_{NF}]]
- c. dahu?ihgíhsi?aasis dahú + ihgá + íhsi $[R_F [R_F R_{NF}]]$ 'thunder + egg + container', 316

- b. abahobinuxbáàga abá + hobí + nuxbáàga 'node + hole + people',40
 [[R_F R_F] R_{NF}]
- d. miraxubaa?ihbú mirá + xubáá + ihbú 'tree sacred.tip', 40 [[R_F R_F] R_F]

Tone competition: Phrases

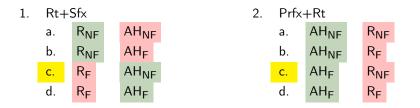
Only the leftmost word surfaces with its tone.

Phrases

(8)

mihcagí(í)hdaa awawáàga waaragic m-íhcagidaa maa-waáàgi-ø maa-naagí-c 1-pro 1.a-sit.down-cont 1a-sit-decl 'I'm sitting by myself', 46 { Wd_{NF} Wd_F}

(9)


{irúgsidi} {îiwagicheedhahaaba} {iiwahgasaarí {irugsidi} {îiwagichee-dhaa-háà-aba} {ii-maa-hgi-asaarí meat distribute-neg-adv-col inst-1a-gi-steal 'Before they passed the mat around I snuck some off', 45 { WdF

```
aabi-hiwaa-c}
áàbi-hiwaa-c}
with-1caus.dir-decl
```


1. Rt+Sfxa. R_{NF} AH_{NF} b. R_{NF} AH_{F} c. R_{F} AH_{NF} 2. Prfx+Rt a. AH_{NF} R_{NF} b. AH_{NF} R_F c. AH_F R_{NF} 16/41

1 a nonfinality effect for roots but not for affixes

2

3

1. Rt+Sfxa. R_{NF} AH_{NF} b. R_{NF} AH_{F} c. R_{F} AH_{NF} R_{F} AH_{F}

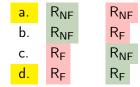
- 2. Prfx+Rt a. AH_{NF}
 - b. AH_{NF} R_F c. AH_F R_{NF} AH_F R_F

R_{NF}

16/41

3. Compounds

2 3

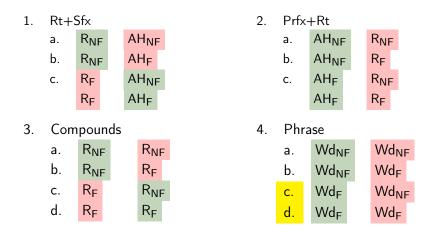


1 a nonfinality effect for roots but not for affixes

1. Rt+Sfx a. R_{NF} AH_{NF} b. R_{NF} AH_F c. R_{F} AH_{NF} R_F AH_F

- 2. Prfx+Rt a. AH_{NF} R_{NF} b. AH_{NF} R_F
 - b. AH_{NF} R_F c. AH_F R_{NF} AH_F R_F

3. Compounds



- **1** a nonfinality effect for roots but not for affixes
- 2 directionality reversal: only compounds show RMost

3

1.	Rt+Sfx				2.	Prfx	Prfx+Rt		
	a.	R_{NF}	А	H _{NF}		a.	AH_{NF}	R _{NF}	
	b.	R_{NF}	А	HF		b.	AH_{NF}	R _F	
	c.	R_F	А	H _{NF}		c.	AH_F	R _{NF}	
		R_F	Д	HF			AH_F	R _F	
3. Compounds 4. Phrase									
	a.	R_{NF}		R_{NF}		a.	Wd_NF	Wd _{NF}	
	b.	R_{NF}		R_F		b.	Wd_NF	Wd _F	
	c.	R_F		R_{NF}		c.	Wd_F	Wd _{NF}	
	d.	R_F		R_F	m	d.	Wd_F	Wd _F	

- 1 a nonfinality effect for roots but not for affixes
- 2 directionality reversal: only compounds show RMost

- **1** a nonfinality effect for roots but not for affixes
- 2 directionality reversal: only compounds show RMost
- **3** no nonfinality effect at the phrasal level

2. Theoretical account: Hidatsa in HLT

- L1 stems
- L2 words
- L3 phrases

- L1 stems
- L2 words
- L3 phrases
- Gradient Symbolic Representations: All linguistic symbols have activity that can gradiently differ and result in gradient violations of both markedness and faithfulness constraints (GSR, e.g. Smolensky and Goldrick, 2016; Rosen, 2016, 2019; Zimmermann, 2019, 2021; Walker, 2020)

- L1 stems
- L2 words
- L3 phrases
- Gradient Symbolic Representations: All linguistic symbols have activity that can gradiently differ and result in gradient violations of both markedness and faithfulness constraints (GSR, e.g. Smolensky and Goldrick, 2016; Rosen, 2016, 2019; Zimmermann, 2019, 2021; Walker, 2020)
- \rightarrow elements can predictably loose/gain activity at every optimization step

- L1 stems
- L2 words
- L3 phrases
- Gradient Symbolic Representations: All linguistic symbols have activity that can gradiently differ and result in gradient violations of both markedness and faithfulness constraints (GSR, e.g. Smolensky and Goldrick, 2016; Rosen, 2016, 2019; Zimmermann, 2019, 2021; Walker, 2020)
- \rightarrow elements can predictably loose/gain activity at every optimization step
- → different behaviour at different levels = different activity at these levels

- L1 stems
- L2 words
- L3 phrases
- Gradient Symbolic Representations: All linguistic symbols have activity that can gradiently differ and result in gradient violations of both markedness and faithfulness constraints (GSR, e.g. Smolensky and Goldrick, 2016; Rosen, 2016, 2019; Zimmermann, 2019, 2021; Walker, 2020)
- \rightarrow elements can predictably loose/gain activity at every optimization step
- → different behaviour at different levels = different activity at these levels
- → interaction of predictable activity adjustment across layers with lexical activity differences

In a nutshell: Hidatsa in HLT

Nonfinality effect only for roots

Final H-tones are weakened in Hidatsa. And roots are optimized at L1 prior to affixation: $R_{\rm F}$ is always weaker than $AH/AP/R_{\rm NF}.$

Tone-assigning morphemes

Prefixed and suffixed floating H_1 : If they win the competition, the are always realized at the edgemost TBU

Rightmost in compounds

Suffixed floating $\mathsf{H}_1\text{-}\mathsf{compound}$ marker wins over weakened final tones and overwrites the leftmost H

No non-finality at the phrase-level

Prefixed floating H_3 is always realized and overwrites the rightmost H

2.2. HLT account: The nonfinality effect for roots

Final H-tone decay: Constraints

• every final H is weakened by 0.2 at every optimization

(10) Final H-decay: Overview
a.
$$R_{NF}$$
 | b. R_{F}
 H_{1} H_{1} H_{1} H_{1} $H_{0.8}$
 $\mu \mu$ $\mu \mu$ $\mu \mu$ $\mu \mu$

Final H-tone decay: Constraints

- every final H is weakened by 0.2 at every optimization
- (10) Final H-decay: Overview a. R_{NF} b. R_{F} H₁ H₁ H₁ H₁ H_{0.8} $\mu \mu$ $\mu \mu$ $\mu \mu$ $\mu \mu$
- (11) a. NFin_H: Assign -x violation for every H_x associated to the final mora. (W=12)
 - b. MaxH: Assign -x violation for every input $H_{\rm x}$ corresponding to output $H_0.(W{=}1000)$
 - c. Id_A: For every input output pair $H_x H_{y \neq 0}$: Assign -(x-y) violations.(W=1)
 - d. Id_A >0.2: For every input output pair H_x - $H_{y\neq 0}$: Assign -(x-y) violations if x-y>0.2.(W= ∞)

Final H-tone decay: L1 root optimization

(12) Final H

$\begin{array}{c} H_1 \\ \mu \\ \mu \end{array}$		$Id_A^{>0.2}$	MaxH	NFin _H	Id _A	
		∞	1000	12	1	
a.	Η ₁ μ			-1		-12
b.	H ₀ µ		-1			-∞
™ C.	Η _{0.8} μ			-0.8	-0.2	-9.8
d.	Η _{0.7} Ι μ	-0.3		-0.7	-0.3	-∞

Tone competition: Constraints

- only a single H can be realized within a word (13-a)
- if tones with the same input activity compete, LMost (13-b) always favors the leftmost one
- if tones have different input activities, MaxH favors the stronger one and this **overrides the** LMost **preference**
- since roots are optimized at L1 but affixes are not, root-final H's are always weaker than affix-H's
- (13) a. Cum: Assign -1 violation for every PrWd dominating more than one $H_{x\neq 0}.~(W{=}\infty)$
 - b. LMost: Assign -1 violation for every H_0 that is followed by a phonetically visible $H_{x\neq 0}$. (W=10)

Tone competition: L2 optimization of $\mathsf{R}_{\mathsf{NF}}\mathsf{-}\mathsf{AH}_{\mathsf{NF}}$

L1:
$$[\mu^{H1} \mu]_{Rt} \rightarrow [\mu^{H1} \mu]_{Rt}$$

(14)

Η ₁ μμ	Η ₁ - μμ		Мах _Н 1000	NFin _H 12	LMost 10	ld _A 1	
I® a.	Η ₁ μ μ	Η ₀ μ μ	-1				-1000
b.	Η ₀ μ μ	Η ₁ μ μ	-1		-1		-1010

Tone competition: L2 optimization of $\mathsf{R}_\mathsf{F}\text{-}\mathsf{AH}_\mathsf{NF}$

L1: $[\mu \; \mu^{H1}]_{Rt} \to [\mu \; \mu^{H0.8}]_{Rt}$

(15)

Η _{0.8} μμ	Η ₁ - μμ		Мах _Н 1000	NFin _H 12	LMost 10	ld _A 1	
a.	Η _{0.8} μ μ	Η ₀ μ μ	-1				-1000
rr≊ b.	Η ₀ μμ	Η ₁ μμ	-0.8		-1		-810

Tone competition: L2 optimization of $\mathsf{R}_\mathsf{F}\text{-}\mathsf{AH}_\mathsf{NF}$

L1: $[\mu \; \mu^{H1}]_{Rt} \to [\mu \; \mu^{H0.8}]_{Rt}$

(15)

Η _{0.8} μμ	Η ₁ - μμ		Max _H 1000	NFin _H 12	LMost 10	ld _A 1	
	H _{0.8}	H ₀				_	
а.	μμ	μμ	-1				-1000
ir≊ b.	Η ₀ μμ	Η ₁ μμ	-0.8		-1		-810

Tone competition: L2 optimization of $\mathsf{R}_\mathsf{F}\text{-}\mathsf{AH}_\mathsf{F}$

L1:
$$[\mu \ \mu^{H1}]_{Rt} \rightarrow [\mu \ \mu^{H0.8}]_{Rt}$$

(16)

Η _{0.8} μ μ	Η ₁ - μ		Мах _Н 1000	NFin _H 12	LMost 10	ld _A 1	
a.	Η _{0.8} μ μ	Η ₀ μ μ	-1				-1000
b.	Η ₀ μ μ	H1 µ	-0.8	-1		-1	-822
r≊ b.	Η ₀ μ μ	H _{0.8} µ	-0.8	-0.8	-1	-0.2	-819.8

Tone competition: L2 optimization of $\mathsf{R}_\mathsf{F}\text{-}\mathsf{AH}_\mathsf{F}$

L1:
$$[\mu \ \mu^{H1}]_{Rt} \rightarrow [\mu \ \mu^{H0.8}]_{Rt}$$

(16)

Η _{0.8} μ μ	Η ₁ - μ		Мах _Н 1000	NFin _H 12	LMost 10	ld _A 1	
a.	Η _{0.8} μ μ	Η ₀ μ μ	-1				-1000
b.	Η ₀ μ μ	H1 µ	-0.8	-1		-1	-822
r≊ b.	Η ₀ μ μ	H _{0.8} µ	-0.8	-0.8	-1	-0.2	-819.8

→ decay for a final affix tone: doesn't influence MaxH's preference

Final tone decay: Overview of affix+root combinations at L2

 AH_{NF}

 AH_{F}

(17)

1. Leftmost H surfaces

i.	R _{NF}	AH _{NF}
ii.	R _{NF}	AH _F
iii.	AH _{NF}	R_{NF}
iv.	AH _F	R_{NF}
٧.	AH _{NF}	R _F
vi.	AH _F	R _F

2. 2nd H surfaces iii. R_F iv. R_F

Final tone decay: Overview of affix+root combinations at L2

(17)

1. Leftmost H surfaces

i.	R _{NF}	AH_{NF}
ii.	R _{NF}	AH_F
iii.	AH _{NF}	R_{NF}
iv.	AH _F	R_{NF}
ν.	AH _{NF}	R _F
vi.	AH _F	R _F

2. 2nd H surfaces

iii.	R_F	AH _{NF}
iv.	R_F	AH _F

Final tone decay: Overview of affix+root combinations at L2

(17)

1. Leftmost H surfaces

i.	R _{NF}	AH_{NF}	
ii.	R _{NF}	AH_F	→ LMost decides
iii.	AH _{NF}	R_{NF}	
iv.	AH _F	R_{NF}	
٧.	AH _{NF}	R _F	
vi.	AH _F	R_F	

2. 2nd H surfaces

iii.	R_F	AH _{NF}
iv.	R_F	AH _F

Final tone decay: Overview of affix+root combinations at L2

(17)

1. Leftmost H surfaces

i.	R _{NF}	AH_{NF}	
ii.	R _{NF}	AH_F	→ LMost decides
iii.	AH _{NF}	R_{NF}	
iv.	AH _F	R_{NF}	
٧.	AH _{NF}	R _F	
vi.	AH _F	R_F	

2. 2nd H surfaces

iii.	R_F	AH _{NF}	→ MaxH decides
iv.	R_F	AH _F	

Final tone decay: Overview of affix+root combinations at L2

(17)

1. Leftmost H surfaces

i.	R _{NF}	AH_{NF}	
ii.	R _{NF}	AH_F	→ LMost decides
iii.	AH _{NF}	R_{NF}	
iv.	AH _F	R_{NF}	
v.	AH _{NF}	R _F	→ LMost & MaxH converge
vi.	AH _F	R_F	LIVIOSE & MAXIT COnverge

2. 2nd H surfaces

iii.	R_F	AH _{NF}	→ MaxH decides
iv.	R_F	AH _F	

2.3. HLT account: Floating tones

Affixed floating tones: L2

- momentaneous suffix: /-^Hhi/
- vocative suffix: $/\text{-}^{H}\mu/$
- 2.poss prefix: $/n^{H}$ -/

Affixed floating tones: L2

- momentaneous suffix: /-^Hhi/
- vocative suffix: $/-{}^{H}\mu/$
- 2.poss prefix: /n^H-/
- suffixed compound marker: /-^H/

Affixed floating tones: L2

- momentaneous suffix: /-^Hhi/
- vocative suffix: $/-{}^{H}\mu/$
- 2.poss prefix: /n^H-/
- suffixed compound marker: /-^H/

Phrasal boundary tone: L3

• Prefixed floating /H-/ added at every left edge of a phrase.

Affixed floating tones: L2

- momentaneous suffix: /-^Hhi/
- vocative suffix: $/-H_{\mu}/$
- 2.poss prefix: /n^H-/
- suffixed compound marker: /-^H/

Phrasal boundary tone: L3

 \bullet Prefixed floating /H-/ added at every left edge of a phrase.

 \rightarrow floating tones exist with two different activities: H₁ and H₃

Floating H-tone realization and activity

Competition with other H-tones

 H_1 participates in general competition: realized if LMost or all others are root-final

 ${\sf H}_3$ dominant: always realized

Floating H-tone realization and activity

Competition with other H-tones

 H_1 participates in general competition: realized if LMost or all others are root-final

H₃ dominant: always realized

Position

- H_1 in the position of the closest (overwritten) H
- $H_{\rm 3}\,$ at morpheme edge: initial/final syllable

Floating H-tone realization and activity

Competition with other H-tones

 H_1 participates in general competition: realized if LMost or all others are root-final

H₃ dominant: always realized

Position

- H_1 in the position of the closest (overwritten) H
- $H_{\rm 3}\,$ at morpheme edge: initial/final syllable
- (18) MCont: Assign -x violations for every tone T_x with morphological colour C that is associated to a syllable σ if σ is preceded and followed by syllables of a different morphological colour D. (W=10)
- (19) DepTS: Assign -1 violation for every new association line between a tone and a TBU if this association line is the only one linking this TBU to a tone. (W=11) (cf. ?)

Floating tones: Different activities and behaviour

(20)	Sumn	hary: Different behaviour						
		Realization Position						
	H_1	competition	overwrites closest H					
	H_3	always	morpheme edge					

Floating tones: Different activities and behaviour

(20)	Sumn	ary: Different behaviour							
		Realization Position							
	H_1	competition	overwrites closest H						
	morpheme edge								

(21) Hidatsa: Attested floating tones

	H ₁	H ₃
suffixed	compound marker, L2	vocative, momentaneous, L2
prefixed	phrasal H%, L3	2.poss, L2

Floating tones: Final constraint

- (22) $H > \mu$: For every input H_x that is not associated to a $TBU_{y\neq 0}$ in the output: Assign -x violation. (W=2000)
 - in the following: as soon as H is not associated, it has 0-activity

Floating H_1 participates in competition: Suffixed compound marker, L2

(23)

Η _{0.8} μμ	Η ₁ μμμ	H ₁		н×е М 1000	Huijan 12	11 DepTS	0 LMost	0 MCont	
a.	Η _{0.8} μ μ	Η ₀ μ μ	H ₀	-2					-2000
r☞ b.	Η ₀ μ μ	Η ₁ μμ	H ₀	-1.8			-1		-1810
c.	Η ₀ μ μ	Η ₀ Η μ μ	0.8	-1.8	-0.8	-1	-2		-1842.8
d.	Η ₀ μ μ	H ₀ F μμ	l ₁	-1.8			-2	-1	-1832.2

Floating H_1 participates in competition: Suffixed compound marker, L2

(24)

Η _{0.8} μμ	Η _{0.8} μμ	H1	н _{хе} 1000	Huish HLinh 12	11 DepTS	10 LMost	0 MCont	
a.	Η _{0.8} μ μ	Η ₀ Η ₀ μ μ	-1.8					-1800
b.	Η ₀ μμ	Η _{0.6} Η ₀ μ μ	-1.8	-0.6		-1		-1817.2
I® C.	Η ₀ μμ	H ₀ H _{0.8} μ μ	-1.6	-0.8		-2		-1631.8

Floating H_1 participates in competition: Suffixed compound marker, L2

(24)

Η _{0.8} μμ	Η _{0.8} μμ	H ₁	н _{хе} 1000	Huijan 12	11 DepTS	10 LMost	0 MCont	
a.	Η _{0.8} μ μ	Η ₀ Η ₀ μ μ	-1.8					-1800
b.	Η ₀ μ μ	Η _{0.6} Η ₀ μ μ	-1.8	-0.6		-1		-1817.2
I® C.	H ₀ μμ	H ₀ H _{0.8} μ μ	-1.6	-0.8		-2		-1631.8

→ apparent RMost is another competing H-tone

34/41

Floating H₁ overwrites closest H: Prefixed phrasal boundary H%, L3

(25)

Η ₁ Η _{0.6} Η ₁ μμμμμ	H×eW 1000	Huiju 12	11 DepTS	0 LMost	0 MCont	
a. $\begin{array}{c c} H_1 & H_0 & H_0 \\ \mu & \mu & \mu & \mu \end{array}$	-1.6		-1			-1611
$\square B. \qquad H_1 H_0 H_0 H_0 H_0 H_0 H_0 H_0 H_0 H_0 H_0$	-1.6				-1	-1610
c. $\begin{array}{c} H_0 & H_0 & H_1 \\ \mu & \mu & \mu \end{array}$	-1.6	-1		-2		-1632

Floating H_1 overwrites closest H: Prefixed phrasal boundary H%, L3

(25)

$ \begin{array}{ccccccc} H_1 & H_{0.6} & H_1 \\ & \mu & \mu & \mu \\ & \mu & \mu & \mu \end{array} $	H×eW 1000	Huiju 12	T DepTS	10 LMost	0 MCont	
a. $\begin{array}{c c} H_1 & H_0 & H_0 \\ \mu & \mu & \mu & \mu \end{array}$	-1.6		-1			-1611
$\blacksquare b. \qquad \begin{array}{c} H_1 \\ \mu \\ $	-1.6				-1	-1610
c. $\begin{array}{c c} H_0 & H_0 & H_1 \\ \mu & \mu & \mu \end{array}$	-1.6	-1		-2		-1632

 \rightarrow absence of nonfinality is another competing H-tone

Floating H_3 associates to adjacent edge: Mom.suffix, L2

(26)

Η ₁ μμμ	Η ₃ μ	нхе М 1000	Huijan 12	11 DepTS	10 LMost	0 MCont	
a.	Η ₁ Η ₀ μμμμ	-3					-3000
b.	H ₀ H ₃ μμμμ	-1			-1	-3	-1040
≌ C.	H ₀ H ₃ μμμμ	-1		-1	-1		-1021

Floating H_3 associates to adjacent edge: Mom.suffix, L2

(26)

$\begin{matrix} H_1 \\ \downarrow \\ \mu \\ \mu \end{matrix}$	Η ₃ μ	нхе 1000	Huijan 12	11 DepTS	10 LMost	0 MCont	
a.	Η ₁ Η ₀ μμμμ	-3					-3000
b.	H ₀ H ₃ µµµµ	-1			-1	-3	-1040
I® C.	H ₀ H ₃ µµµµ	-1		-1	-1		-1021

Floating H_3 associates to adjacent edge: Mom.suffix, L2

(26)

Η ₁ μμ	Η ₃ μ	нхе М 1000	Huijan 12	11 DepTS	10 LMost	0 MCont	
a.	Η ₁ Η ₀ μμμμ	-3					-3000
b.	H ₀ H ₃ µµµµ	-1			-1	-3	-1040
I® C.	H ₀ H ₃ µµµµ	-1		-1	-1		-1021

3. Conclusion

Summary

• An alternative account of tone in Hidatsa apparently needs to rely on domain- and morpheme-specific grammars and root markedness.

Summary

- An alternative account of tone in Hidatsa apparently needs to rely on domain- and morpheme-specific grammars and root markedness.
- The HLT account presented here predicts the complex interaction of morpheme- and domain-specific effects
 - from a single phonological grammar

- An alternative account of tone in Hidatsa apparently needs to rely on domain- and morpheme-specific grammars and root markedness.
- The HLT account presented here predicts the complex interaction of morpheme- and domain-specific effects
 - from a single phonological grammar
 - that optimizes cyclically

- An alternative account of tone in Hidatsa apparently needs to rely on domain- and morpheme-specific grammars and root markedness.
- The HLT account presented here predicts the complex interaction of morpheme- and domain-specific effects
 - from a single phonological grammar
 - that optimizes cyclically
 - and relies on activity for phonological elements

Summary

- An alternative account of tone in Hidatsa apparently needs to rely on domain- and morpheme-specific grammars and root markedness.
- The HLT account presented here predicts the complex interaction of morpheme- and domain-specific effects
 - from a single phonological grammar
 - that optimizes cyclically
 - and relies on **activity** for phonological elements
- It highlights one of HLT's strength: the interaction of
 - predictable activity adjustments across layers and
 - lexical activity differences

HLT account of Hidatsa: Summary

Nonfinality effect only for roots

Roots are pre-optimized and final H-tones weakened at L1 - MaxH will always favor the strongest input tone

Tone-assigning morphemes

Prefixed and suffixed floating H_1 : If they win the competition, the are always realized at the edgemost TBU since MCont >DepTS

Rightmost in compounds

Suffixed floating H₁-compound marker wins over weakened root tones and overwrites the lefttmost H since 3xDepTS > MCont

No non-finality at the phrase-level

Prefixed floating H_3 is always realized and overwrites the rightmost H since $3x\mathsf{DepTS}$ $>\mathsf{MCont}$

References

Park, Indrek (2012), A grammar of Hidatsa, PhD thesis, Indiana University.

- Rosen, Eric (2016), Predicting the unpredictable: Capturing the apparent semi-regularity of rendaku voicing in Japanese through Harmonic Grammar, *in* E.Clem, V.Dawson, A.Shen, A. H.Skilton, G.Bacon, A.Cheng and E. H.Maier, eds, 'Proceedings of BLS 42', Berkeley Linguistic Society, Berkeley, pp. 235–249.
- Rosen, Eric (2019), Evidence for gradient input features from Sino-Japanese compound accent, *in* 'Proceedings of AMP 2018', LSA.
- Smolensky, Paul and Matthew Goldrick (2016), 'Gradient symbolic representations in grammar: The case of French liaison', Ms, Johns Hopkins University and Northwestern University, ROA 1286.
- Tranel, Bernard (1995), On the status of universal association conventions: Evidence from Mixteco, *in* J.Ahlers, L.Bilmes, J.Guenter, B.Kaisse and J.Namkung, eds, 'Proceedings of BLS 21', pp. 299–312.
- Trommer, Jochen (2019), 'A harmonic layer account of Levantine Arabic syncope', talk, presented at OCP 16, Verona, January 17, 2019; online available at https://home.uni-leipzig.de/jtrommer/papers/LevantineOCPVerona2019.pdf.
- Walker, Rachel (2020), Gradient activity in Korean place assimilation, in Y. S. . A. W.Mariam Asatryan, ed., 'Proceedings of the North East Linguistics Society 50', Vol. 3, GLSA, Amherst, MA, pp. 207–220.
- Zimmermann, Eva (2019), Gradient symbolic representations and the typology of ghost segments, in K.Hout, A.Mai, A.McCollum, S.Rose and M.Zaslansky, eds, 'Proceedings of AMP 2018', LSA, https://doi.org/10.3765/amp.

Zimmermann, Eva (2021), 'Faded copies: Reduplication as distribution of activity', Glossa 6, 58.

Zimmermann, Eva and Jochen Trommer (2021), 'Getting stronger or weaker at every stratum: a new approach to tonal morphophonology', poster at the Manchester Phonology Meeting on May 26th, 2021.

Eva.Zimmermann@uni-leipzig.de

- a single H-toned mora in each word that can occur in any position
- referred to as 'accent' in the literature
- the 'accented' mora and all preceding ones: realized with a high pitch; all others with a low pitch (27)

(27) C	ontrastive a	accent (Park, 2012,	34)		
HH	mahgú	'to dwell'	HL	máhgu	'cottonwood'
ННН	arawí	'to notice sth.'	HHL	aráwi	'to be bitter'
HHL	aghíri	'be lucky'	HLL	ághiri	'be tame'
НННН	araghabí	'to walk on paws or claws'	HHHL	arahgábi	'to scratch sth. with paws or toenails'