Morphological asymmetries by cyclic optimization: Hidatsa as an argument for Harmonic Layer Theory

> Eva Zimmermann, Leipzig University mfm, May 25th, 2023

UNIVERSITÄT LEIPZIG

Main claim

- An analysis of the tone system of Hidatsa seemingly requires multiple grammars for different levels (word vs. phrase), constructions (words vs. compounds), morpheme-types (roots vs. affixes), and specific morphemes.
- I argue that all these asymmetries fall out within a cyclic model of phonology where phonological elements have a certain activity that can gradiently differ.
- In such a system, **lexical activity** differences of certain tonal morphemes and predictable **activity adjustments across layers** interact.
- → a single phonological grammar across layers and without reference to specific morphemes predicts the complex system

1. Data: Tone in Hidatsa

Hidatsa: Background

The language

- Siouan language of North Dakota, spoken by ${\sim}100$ people
- all data from Park (2012)

Hidatsa tone

- a single H-toned mora in each word that can occur in any position ($\sim\text{`accent'})$
- roots have a lexically contrastive H-tone on the non-final mora $(\mathsf{R}_{\mathsf{NF}})$ or on a final one $(\mathsf{R}_{\mathsf{F}})$
- affixes either have a H-tone on any mora (A_{NF/F}), are tone-less (Ø), or demand a H-tone on an adjacent syllable (AP)
- → competition between different underlying H-tones

The challenge in a nutshell

(1)

	H-tone competition	Nonfinality?
Words (R+A)	leftmost	yes
	dominance	
Compounds	leftmost	yes
	rightmost	
Phrases	leftmost	no

H-tone competition: Roots and affixes

If multiple H-tones are present in a word, only the **leftmost** H-tone that is **not on the final mora of a root** is realized.

Some suffixes are **dominant** and cause a H-tone on a preceding syllable, overriding the LMost preference.

- (2) Affixes and R_{NF}: Leftmost H-tone surfaces
 - a. bu?áà?ii bu?éè-ø-íí smoky-cont-intens, 230 R_{NF} - A_F
 - c. abádaahaghaa abádaa-hahgá-háà chest-ABIL-ADV, 485 R_{NF} - <mark>A_F - A_{NF}</mark>

- b. nácaagic ná-cáàgic 2.sg-mourn, 73 A_F - R_{NF}
- d. náree?iic ná-néè-îi-c 2.act-go-hab.sg-decl, 173 Af - R_{NF} - A_{NF}

Roots and affixes II

- (3) Affixes and R_F : Final root H-tone only if no other H-tone present
 - a. xiiba?íí
 xiibí-ø-íí
 wrinkled-cont-intens, 229
 R_F A_F
 - c. macééwa macéé-wa man-INDEF, 41 R_F -ø

- b. maceeríwa macéé-rí-wa man-ERG-INDEF, 41 RF - AF -ø
- d. maré?dhaa?wa ma-iré?-dhaa-?a-wa 1.POS-speak-NEG-PL-SIMULT, 537 Ø- RF -Ø-Ø-Ø

b.

- (4) Momentaneous suffix / <u>´hi</u>/: H on preceding mora
 - a. nuwiiráhic núwiiri-<u>´hi</u>-c twist-momentaneous-DECL, 42 R_{NF} - AP -ø
 - c. naraaháhi? ná-néè-<u>´hi</u>-? 2.ACT-go-momentaneous-Q, 191 AF - RA_{NF} - AP -ø
- mahááhiwic ma-héè-<u>´hi</u>-wi-c 1.AcT-do-momentaneous-1.FUT-DECL, 191 ø- <mark>RA_{NF}</mark> - AP -ø-ø
- d. oocihgiwááhiwiha?c óòcihgee-waa-<u>´hi</u>-wihi-?-c rest-1.CAUS.DIR-MOM-1.FUT.PL-PL-DECL, 194 RA_{NF}-Ø- AP -Ø-Ø

Tone competition: Compounds

The leftmost non-final H-tone is realized.

If all H-tones are final, the **rightmost** one is realized.

2-member-compounds

(5)

- a. úùwihsi úùwi + íhsi clay + container, 316 R_{NF} R_{NF}
- c. miriwáàhdii mirí + máàhdii water + vehicle, 40 R_F R_{NF}

- b. céésiihsa céésa + iihsá wolf + his.tooth, 316 R_{NF} R_{NF}
- d. naxbichaadí naxbichí + aadí bear + his.house, 317 RF RF

3-member-compounds

(6)

- a. icúùwasgiidihsi
 icúùwasga + iidá + íhsi
 horse + his.face + container, 316
 [R_{NF} [R_F R_{NF}]]
- c. dahu?ihgíhsi?aasis
 dahú + ihgá + íhsi
 thunder + egg + container, 316
 [R_F [R_F R_{NF}]]

- b. abahobinuxbáàga abá + hobí + nuxbáàga node + hole + people, 40
 [[R_F R_F] R_{NF}]
- d. miraxubaa?ihbú mirá + xubáá + ihbú tree + sacred.tip, 40 [[R_F R_F] R_F]

Tone competition: Phrases

Only the leftmost word surfaces with its tone.

Phrases

(7)

mihcagí(í)hdaa awawáàga waar m-íhcagidaa maa-waáàgi-ø maa-1-PRO 1.ACT-sit.down-CONT 1.ACT 'l'm sitting by myself', 46

waaragic maa-naagí-c 1.ACT-sit-DECL

$\{\,\mathsf{Wd}_{\mathsf{NF}}$

 Wd_F

(8)

{irúgsidi}{îiwagicheedhahaaba}{iiwahgasaarí{irugsidi}{îiwagichee-dhaa-háà-aba}{ii-maa-hgi-asaarímeatdistribute-NEG-ADV-COLLECTIVEINST-1.ACT-GI-steal'Before they passed the mat around I snuck some off', 45

aabi-hiwaa-c} áàbi-hiwaa-c} with-1.cAUS.DIR-DECL

 $\{ Wd_F \}$

Summary of empirical facts

- 1 a nonfinality effect for roots but not for affixes
- 2 dominant suffixes overriding LMost
- 3 directionality reversal: only compounds show RMost
- 4 no nonfinality effect at the phrasal level

2. Theoretical account: Hidatsa in HLT

Background assumptions: Harmonic Layer Theory (Trommer, 2019; Zimmermann and Trommer, 2021)

1 a single grammar (=constraint weighting) that cyclically optimizes at three layers

- L1 stems
- L2 words
- L3 phrases
- Gradient Symbolic Representations: All linguistic symbols have activity that can gradiently differ and result in gradient violations of both markedness and faithfulness constraints (GSR, e.g. Smolensky and Goldrick, 2016; Rosen, 2016, 2019; Zimmermann, 2019, 2021; Walker, 2020)
- \rightarrow elements can predictably loose/gain activity at every optimization step
- → different behaviour at different levels = different activity at these levels
- → interaction of predictable activity adjustment across layers with lexical activity differences

In a nutshell: Hidatsa in HLT

The nonfinality effect for roots

Final H-tones are weakened in Hidatsa. And roots are optimized at L1 prior to affixation: R_F is always weaker than AH/AP/ R_{NF} .

Directionality reversal in compounds

Suffixed floating H₁-compound marker which wins the competition against (weakened) RF_F . It associates to the final TBU.

No non-finality at the phrase-level

Prefixed floating H₁ always wins the competition since it is leftmost. It associates to the same TBU as the closest H - **position-overwriting**.

And the behaviour of the AH-suffixes?

They contain a suffixed floating H_3 that always wins the competition since it is super-strong. It always associates to the final mora of the adjacent morpheme edge.

2.2. HLT account: The nonfinality effect for roots

20/41

Final H-tone decay: Constraints

- every final H is weakened by 0.2 at every optimization
- a. NFin_H: Assign -x violation for every H_x associated to the final mora. (W=12)
 - b. MaxH: Assign -x violation for every input $H_{\rm x}$ corresponding to output $H_{0.}(W{=}1000)$
 - c. Id_A: For every input output pair $H_x H_{y \neq 0}$: Assign -(x-y) violations.(W=1)
 - d. $Id_A^{>0.2}$: For every input output pair H_x - $H_{y\neq 0}$: Assign -(x-y) violations if x-y>0.2.(W= ∞)

Final H-tone decay: L1 root optimization

(11)

L1: µ	H_1 μ	$Id_A^{>0.2}$	MaxH	NFin _H	ld _A	
		∞	1000	12	1	
a.	Η ₁ μ μ			-1		-12
b.	Η ₀ μ μ		-1			-∞
I® C.	Η _{0.8} μμ			-0.8	-0.2	-9.8
d.	Η _{0.7} μμμ	-0.3		-0.7	-0.3	-∞

Tone competition: Two competing mechanisms

- only a single H can be realized within a word
 - (12) Cum: Assign -1 violation for every PrWd dominating more than one $H_{x\neq 0}$. (W= ∞)
- if tones with the same input activity compete, LMost always favors the leftmost one
 - (13) LMost: Assign -1 violation for every H_0 that is followed by a phonetically visible $H_{x\neq 0}$. (W=10)
- if tones have different input activities, MaxH favors the stronger one and this overrides the LMost preference
- ➡ since roots are optimized at L1 but affixes are not, root-final H's are always weaker than affix-H's

L2 optimization of R_{NF} - A_{NF} : Leftmost wins

(14) L1,
$$R_{NF}$$
: $\mu^{H1} \mu \rightarrow \mu^{H1} \mu$

L2 optimization of R_{F} - A_{NF} : Strongest wins

(15) L1, R_F:
$$\mu \mu^{H1} \rightarrow \mu \mu^{H0.8}$$

L2 optimization of R_F-A_F: Strongest input H wins

(16) L1,
$$R_F: \mu \mu^{H1} \rightarrow \mu \mu^{H0.8}$$

L2: $\begin{array}{ccc} H_{0.8} & H_1 \\ \downarrow & \downarrow \\ \mu & \mu & - \\ \mu \end{array}$			Max _H	NFin _H	LMost	Id _A	
			1000	12	10	1	
a.	Η _{0.8} μ μ	Η ₀ μ μ	-1				-1000
b.	Η ₀ μ μ	H1 µ	-0.8	-1	-1		-822
I® C.	Η ₀ μμ	H _{0.8} µ	-0.8	-0.8	-1	-0.2	-819.8

→ decay for a final affix tone: doesn't influence MaxH's preference

26/41

Final tone decay: Overview of affix+root combinations at L2

(17)

1. Leftmost H surfaces

i.	R _{NF}	A_{NF}	
ii.	R _{NF}	A _F	→ LMost decides
iii.	A _{NF}	R_{NF}	
iv.	A _F	R_{NF}	
٧.	A _{NF}	$R_F R_F$	> Most & MaxH converge
vi.	A _F	$R_F R_F$	LIVIOSE & MAXIT CONVErge

2. 2nd H surfaces

iii. $R_F R_F$ $A_{NF} \rightarrow MaxH$ decides iv. $R_F R_F$ A_F

• final H-tones that are weakened at L1: input $H_{0.8}$ at L2

2.3. HLT account: Compounding

Directionality reversal for R_F-R_F-compounds

Suffixed floating tone: compound marker $/-H_1/$

- added at L2 after roots were already optimized at L1
- will loose against every R_{NF} due to LMost
- \rightarrow but the compound marker will win against weakened H_{0.8} (=R_F)

Suffixed compound-H₁: looses competition against another H₁

(18) L1, R_F:
$$\mu \mu^{H1} \rightarrow \mu^{H0.8}$$

L1, R_{NF}: $\mu^{H1} \mu \rightarrow \mu^{H1} \mu$

L2: $\begin{array}{cccc} H_{0.8} & H_1 & H_1 \\ \mu & \mu & \mu \\ \mu & \mu & \mu \end{array}$	HxeW 1000	Huisu 12	11 DepTS	10 LMost	0 MCont	
a. $H_{0.8}$ H_0 H_0 μ μ μ μ μ	-2					-2000
■ b. H ₀ H ₁ H ₀ μ μ μ μ μ	-1.8			-1		-1810
c. $\begin{array}{c} H_0 \\ \mu \\ $	-1.8			-2	-1	-1830

Suffixed compound-H₁: wins competition against only $H_{0.8}$

(19) L1, R_F:
$$\mu \mu^{H1} \rightarrow \mu \mu^{H0.8}$$

L1, R_F: $\mu \mu^{H1} \rightarrow \mu \mu^{H0.8}$

L2: Η _{0.8} Η _{0.8} Η ₁ μμμμμ	HxeW 1000	Huidh Heinh 12	11 DepTS	0 LMost	0 MCont	
a. $\begin{array}{ccc} H_{0.8} & H_0 & H_0 \\ \mu & \mu & \mu \\ \mu & \mu & \mu \end{array}$	-1.8					-1800
b. Η ₀ Η _{0.6} Η ₀ μμμμμ	-1.8	-0.6		-1		-1817.2
^{III} S ^{II} C. H ₀ H ₀ H ₀ H _{0.8} μμμ μμ	-1.6	-0.8		-2		-1629.6

→ apparent RMost is another competing H-tone

2.4. HLT account: No nonfinality at the phrase level

No non-finality at L3

Prefixed phrasal boundary tone $/H_{1}$ -/

- added at L3 and precedes all other tones
- wins the competition against all other H-tones due to LMost
- associates to the closest TBU that was underlyingly associated to a H: position overwriting
 - predicted since (20-a) has a higher weight than (20-b)
- (20) DepTS: Assign -1 violation for every new association line between a tone and a TBU if this association line is the only one linking this TBU to a tone. (W=11) (cf. Tranel (1995))
- (21) MCont: Assign -x violations for every tone T_x with morphological colour C that is associated to a mora μ if μ is preceded and followed by moras of a different morphological colour D. (W=10)

Prefixed phrasal boundary H₁ always overwrites closest H

(22)
L1, R_F:
$$\mu \mu^{H1}$$
 -> $\mu \mu^{H0.8}$
L1, R_{NF}: $\mu^{H1} \mu$ -> $\mu^{H1} \mu$
L2, R_F: $\mu \mu^{H0.8}$ -> $\mu \mu^{H0.6}$
L2, R_{NF}: $\mu^{H1} \mu$ -> $\mu^{H1} \mu$

2.5. HLT account: And other floating tones?

More floating tones in Hidatsa

Suffixed /H₃/: Momentaneous

- wins the competition against all other tones: a **superstrong** tone that is always realized
- is realized on the final TBU of the preceding morpheme
 - this violates DepTS but the gradient 3x violation of MCont overrides DepTS's effect

Floating H₃ associates to adjacent edge: Mom.suffix, L2

(23) L1,
$$R_{NF}$$
: $\mu^{H1} \mu \rightarrow \mu^{H1} \mu$

L2: H ₁ H ₃	HxeW 1000	Huisu 12	11 DepTS	10 LMost	01 MCont	
a. $\begin{array}{c} H_1 & H_0 \\ \mu & \mu & \mu \end{array}$	-3					-3000
■ b. H ₀ H ₃ μμμμ	-1		-1	-1		-1021
c. Η ₀ Η ₃ μμμμ	-1			-1	-3	-1040

Summary: Floating H-tone realization and activity

$\begin{array}{c|c} (24) & \mbox{Different behaviour of floating tones} \\ & \hline & Realization & Position \\ \hline & H_1 | competition & overwrites closest H \\ \hline & H_3 | always & morpheme edge \\ \end{array}$

(25) Hidatsa: Attested floating tones

	H ₁	H ₃
suffixed	compound marker, L2	vocative, momentaneous, L2
prefixed	phrasal H%, L3	2.poss, L2

3. Conclusion

Summary

- An alternative account of tone in Hidatsa apparently needs to rely on domain- and morpheme-specific grammars and root markedness.
- The HLT account presented here predicts the complex interaction of morpheme- and domain-specific effects
 - from a single phonological grammar
 - that optimizes cyclically
 - and relies on **activity** for phonological elements
- It highlights one of HLT's strength: the interaction of
 - predictable activity adjustments across layers and
 - lexical activity differences

References

Park, Indrek (2012), A grammar of Hidatsa, PhD thesis, Indiana University.

- Rosen, Eric (2016), Predicting the unpredictable: Capturing the apparent semi-regularity of rendaku voicing in Japanese through Harmonic Grammar, *in* E.Clem, V.Dawson, A.Shen, A. H.Skilton, G.Bacon, A.Cheng and E. H.Maier, eds, 'Proceedings of BLS 42', Berkeley Linguistic Society, Berkeley, pp. 235–249.
- Rosen, Eric (2019), Evidence for gradient input features from Sino-Japanese compound accent, *in* 'Proceedings of AMP 2018', LSA.
- Smolensky, Paul and Matthew Goldrick (2016), 'Gradient symbolic representations in grammar: The case of French liaison', Ms, Johns Hopkins University and Northwestern University, ROA 1286.
- Tranel, Bernard (1995), On the status of universal association conventions: Evidence from Mixteco, *in* J.Ahlers, L.Bilmes, J.Guenter, B.Kaisse and J.Namkung, eds, 'Proceedings of BLS 21', pp. 299–312.
- Trommer, Jochen (2019), 'A harmonic layer account of Levantine Arabic syncope', talk, presented at OCP 16, Verona, January 17, 2019; online available at https://home.uni-leipzig.de/jtrommer/papers/LevantineOCPVerona2019.pdf.
- Walker, Rachel (2020), Gradient activity in Korean place assimilation, in Y. S. . A. W.Mariam Asatryan, ed., 'Proceedings of the North East Linguistics Society 50', Vol. 3, GLSA, Amherst, MA, pp. 207–220.
- Zimmermann, Eva (2019), Gradient symbolic representations and the typology of ghost segments, in K.Hout, A.Mai, A.McCollum, S.Rose and M.Zaslansky, eds, 'Proceedings of AMP 2018', LSA, https://doi.org/10.3765/amp.

Zimmermann, Eva (2021), 'Faded copies: Reduplication as distribution of activity', Glossa 6, 58.

Zimmermann, Eva and Jochen Trommer (2021), 'Getting stronger or weaker at every stratum: a new approach to tonal morphophonology', poster at the Manchester Phonology Meeting on May 26th, 2021.

Eva.Zimmermann@uni-leipzig.de

- a single H-toned mora in each word that can occur in any position
- referred to as 'accent' in the literature
- the 'accented' mora and all preceding ones: realized with a high pitch; all others with a low pitch (26)

(26)	Contrastive	accent (Park, 2012	2, 34)		
HH	mahgú	'to dwell'	HL	máhgu	'cottonwood'
HHH	arawí	'to notice sth.'	HHL	aráwi	'to be bitter'
HHL	aghíri	'be lucky'	HLL	ághiri	'be tame'
ННН	H araghabí	'to walk on paws or claws'	HHHL	arahgábi	'to scratch sth. with paws or toenails'

H-assigning prefixes

(27)

2.poss pr	efix /n ^H -/:	stem-initial H	l (Park, 2012, 344)
3.poss	1.poss	2.poss	
áàci	máàci	náàci	'breasts'
aasí	maasí	n <mark>á</mark> àsi	'horn'
ahgúxi	mahgúxi	n <mark>á</mark> hgúxi	'ear'
iicagí	miicagí	n î icagi	'cane'

AP - R_{NF}

Floating tones: Final constraint

- (28) $H>\mu$: For every input H_x that is not associated to a $TBU_{y\neq 0}$ in the output: Assign -x violation. (W=2000)
 - in the following: as soon as H is not associated, it has 0-activity