First come – first served: The serial interaction of feet and tone

Eva Zimmermann Universität Leipzig

mfm 27, 2019, Manchester

Main Claim

- opposing phonological preferences in HS can be resolved by a 'first come-first served'-principle: Optimization of underlying elements has priority over optimization of inserted structure
- a serial optimization account allows to predict positionally restricted tone/accent systems from the order between foot parsing and tone association
- this correctly predicts
 - non-local templatic accent systems as in Mayo and Tagalog that are impossible to capture in a SPOT alternative and
 - the asymmetric distribution of different defaults in Goizueta
 Basque that are not as easily captured in a SPOT system.

Positionally Restricted Accent Systems

- lexical contrast for pitch: Prototypical tone
- positionally restricted, usually only a single V/σ: Prototypical stress
 - A special third pattern with an 'accent' mark? (e.g. for Japanese McCawley (1968); Ross (1985); Haraguchi (1991); Kubozono (1993))
 - → 'accent' patterns always reanalyzable as tonal and/or metrical patterns and their interaction (Hyman, 2009; Köhnlein, 2019)

1. Non-local templates in Mayo

Mayo (Uto-Aztecan; Hagberg (1989, 1990, 2006); Hyman (2009); Spahr (2016))

one vowel in every word is realized with a higher pitch

(1) Mayo accent (Hagberg, 2006, 73)

Accented		Unaccented	
chúpnake hí-chupnake	'will harvest' Trns 'will harvest' Intr	ponnáke hi-pónnake	'will play' Trns 'will play' Intr
hí-hi-chupnake chíknake hí-chiknake hí-hi-chiknake	'will always harvest' 'will sweep' Trns 'will sweep' Intr 'will always sweep' Intr	hi-hí-ponnake wiséka hi-wíseka hi-hí-wiseka	'will always play' Intr 'sawing' Trns 'sawing' Intr 'always sawing'

a non-local templatic accent system: The stem determines the stress pattern for the whole word and is not necessarily stressed itself

Serial Account in a Nutshell

Conflict for tones as head of a φ (e.g. de Lacy, 2002)

Tones are preferably initial:

lambic feet are preferably binary:

(independent evidence for the assumed φ structure from loanwords and reduplication)

Underlying contrast: Stems with/without a floating H-tone

- underlying floating H-tones are associated to their preferred position before feet are built
- without a floating H-tone, the unmarked foot is created before a default H is inserted

Steps in a Serial Account of Mayo

(2)

1. Morpheme Concatenation

hi-ponnake hi-chupnake

2. Floating H-association

hi ponnake hi chupnake

3. Foot assignment

(hipon)_φnake (hi)_φchupnake

4. Insertion of H on foot head

H (hipon)_φnake (hi)_φchupnake

Harmonic Serialism (McCarthy, 2008*a,b*, 2010; Elfner, 2009, 2016; Moore-Cantwell, 2011; McCarthy et al., 2012; Torres-Tamarit, 2012; Pruitt, 2012; Pater, 2012)

- GEN is restricted by gradualness and there is a GEN-EVAL-Loop that continues as long as a new step is harmonically improving
- possible one-step operations in the domain of feet and tone: (McCarthy et al., 2012; Breteler, 2018)
 - 1. Link a tone to a TBU
 - Insert a tone and link it to a TBU
 - Build a foot
 - Delink a tone from a TBU

Constraints 1

- (3) H associates and wants to be initial
 - a. *FLTHAssign * for each tone not associated to a TBU.
 - ALIGN(H,L)
 Assign * for every TBU that intervenes between the left word edge and the leftmost TBU a tone H is associated to.
- (4) Foot is built and wants to be binary
 - a. HAVEφ! (after (Ito and Mester, 2009))
 Assign * for every prosodic word that does not dominate a foot.
 - b. FTBIN Assign * for each φ that is not binary on the σ level.

Constraints 2

- (5) Every foot needs a H and every H is in a foot
 - a. ϕ HD->H (=License(Min-R, H) (Breteler, 2018, 20)) For each MinFt, assign * if its rightmost syllable is not associated to a H tone.
 - H->φHD (=License(Min-R, H))
 For each H, assign * if it is not associated to a syllable that is rightmost in a MinFt.
- (6) Feet are always left-aligned and iambic
 - a. RHT:I (Kager, 1999)Assign * for every foot with initial prominence.
 - b. ALIGN(ϕ ,L; ω ,L) Assign * for every σ that intervenes between the leftmost σ in a ϕ and the left word edge.

HS Optimization: Step 1, No Underlying H

(7) Foot building

h i	i - ponnake	*FLTH	анф<-н	FTBIN	ΗΑνεφ!	н<-анф	ALIGN(H,L)
a.	hi ponnake				*!		
☞ b.	(hipon) _φ nake					*	
C.	(hi) _φ ponnake			*!		*	
d.	H hi ponnake		*!		*		

HS Optimization: Step 2, No Underlying H

(8) Default H

(h	ipon) _φ nake	*FLTH	н->ФНр	FTBIN	ΗΑνεφ!	н<-аНф	ALIGN(H,L)
a.	(hipon) _φ nake					*!	
r≊ b.	H (hipon) _φ nake						*
c.	H (hipon)φnake		*!			*	

HS Optimization: Step 1, Underlying H

(9) Tone association

H hi-chupnake	*FLтН	аНф<-Н	FTBIN	Ηανεφ!	фНр->Н	ALIGN(H,L)
a. hi-chupnake	*!			*		
b. (hichup) _φ nake	*!				*	
H hichupnake		*		*		
d. Hichupnake		*		*		*!

HS Optimization: Step 2, Underlying H

(10) Foot building

h	H i c h u p n a k e	*FLTH	аНф<-Н	FTBIN	Ηανεφ!	маНф	ALIGN(H,L)
a.	H h i c h u p n a k e		*!		*		
r≆ b.	H (h i) _φ c h u p n a k e			*			
d.	H (hipon) _φ nake		*!			*	

HS Account for Mayo: RotB

(11) OCP
$$\gg$$
 Flth , MaxFlt, DepAL(H- μ)_{Affix} \gg H-> ϕ Hd \gg FtBin \gg Have ϕ ! \gg ϕ Hd->H \gg Align(H,L), Max_{AL}, DAL, DepH

(12) Predicted outcomes for some bi-/trisyllabic inputs with 0-2 H's

(*DoY derivation for underlyingly associated H's: H-deletion – ϕ -building – H-epenthesis)

mfm 27

Mayo in a Parallel OT system?

(13) If $Max_{AL} \gg FTBIN \gg ALIGN(H,L)$:

b. 'Accented' H chupnake (chu)φpnake			underlying	output
b. 'Accented' H chupnake (chu)φpnake	a.	'Unaccented'	ponnake	Η (ponna) _φ k e
		(=no H)	hi-ponnake	H (hipon) _φ nake
	b.	'Accented'	H chupnake	Η (c h u) _φ p n a k e
(=associated H) hi-chupnake (hichu) _φ pna		(=associated H)	H hi-chupnake	Η (h i c h u) _φ p n a k e

• apparently only solution: $ALIGN(H, L_{MORPH}) \gg FTBIN \gg ALIGN(H, L_{EPENTH})$

Accent system in Tagalog (French, 1988; Schachter and Otanes, 1983; Hagberg, 2006)

(14)Mirror image of Mayo at the right edge (Hagberg, 2006, 176) A. Stems with penult accent | B. Stems with final accent bársa 'read' ?upó? 'sit' bassá-hin 'to read' ?upo?-án 'sits on X'

- (15)Exceptional suffixes (Hagberg, 2006, 179-80)
 - ø-Adjectivizer: A-stems=final accent a. bízhis 'way of dressing' bizhís 'dressed up'
 - h. Nominal: A-stems=final accent; B-stems=penult accent húgas 'to wash' hugas-án 'place for washing' aklát aklát-an 'hook' 'library'

HS Account for Tagalog

2. Different Defaults in Goizueta Basque

Four Prosodic Patterns (Hualde et al., 2008)

(17)Prosodic contrasts in Goizueta Basque (Hualde et al., 2008, 3)

			-			
		Rising pitch			Falling pitch	
2nd σ	A.	giz <mark>ó</mark> n	'man'	C.	pur <mark>è</mark>	'puree'
		al <mark>á</mark> ba	'daughter'		tip <mark>ù</mark> la	'onion'
		em <mark>á</mark> kume	'woman'		esk <mark>ò</mark> la	'school'
1st σ	B.	s <mark>é</mark> me	'son'	D.	b <mark>à</mark> so	ʻglass'
		ú me	'children'		mòro	'Moor'
		<mark>á</mark> ma	'mother'		l <mark>è</mark> ngusu	'cousin'

Serial Account in a Nutshell

Conflict: Preferred positions for tones as head of a ϕ

(18) Foot binary
$$\sigma$$
 A. gizón C. purè $\varphi = \mathfrak{D}$ T= \mathfrak{D}

Tone initial σ B. séme D. bàso $\varphi = \mathfrak{D}$ T= \mathfrak{D}

Underlying contrast: Stems with/without a floating H/L

- floating L's: associated to their preferred position before feet are built
- floating H's: associated to head of a binary foot after feet are built
- no floating tones: default-H's are inserted after feet are built
- associated tones on 1/2 V remain; others are deleted
- → different defaults for underlying vs. inserted and L- vs. H-tones

Steps in a Serial Account of Goizueta Basque

HS Account for Goizueta Basque

- (20) *FLTL , DEPL \gg HAVE ϕ ! \gg *FLTH , ϕ Hd->H, H-> ϕ Hd \gg FTBIN, ALIGN(H,L), MAXAL , DAL , DEPH
- (21) Predicted outcomes for bi-/trisyllabic stems with 0-1 tone(s)

Goizueta Basque in a Parallel OT system?

(22)Haveφ!, *Flth, *Flth, φHd->H, H->φHd, Depl, \gg Deph, Max_{AL}, DAL \gg FtBin \gg ALIGN(H,L)

(23)*Predicted outcomes for bi-/trisyllabic stems with 0-1 tone(s)*

1.
$$\sigma \sigma$$
 $(\sigma \sigma)$ A: $V \dot{V}$

2. H H A: $V \dot{V}$

3. L L C: $V \dot{V}$

4. H H B: $\dot{V} \dot{V}$

5. L L D: $\dot{V} \dot{V}$

6. H H H A: $V \dot{V}$

7. g L	(oo)	C: VV	13.
8. σσσ	Н (σσ)	A: VÝ	14.
9. H σσσ	Η (σσ) σ	A: VÝ	15.
10. L	L (σσ) σ	C: VV	16.
11. H σσσ	Η (σ)σ σ	B: ÝV	
12. L σσσ	L (σ)σ σ	D: VV	

C: VV

C: VV

A: VÝ

C: VV

 $(\sigma\sigma)\sigma$

 $(\sigma\sigma)\sigma$

H (၀၀) ဝ

σσσ

σσδ

Predictions of HS and SPOT and the Distribution of Accent

(24) Different distribution of 4 patterns among 16 basic stem types

	A: VÝ	B: ÝV	C: VV	D: VV	
SPOT	6	2	6	2	
HS	6	2	4	4	→ frequency of classes in G.Basque

HS vs. SPOT: Different factorial typologies

- given the same constraint set, the positions for newly associating tones (=epenthetic, floating)
 - can be different (=different defaults) in HS.
 - are identical (=a single default) in SPOT.
- → Cf. excerpt of factorial typology (25) (done in OTHelp (Staubs et al., 2010))
 - for iambic languages with one initial φ
 - for 16 inputs (bi-/trisyllabic; 0-1 tone that is associated or not)

Defaults for Newly Associated Tones: Abstract of a Factorial Typology

(25)SPOT (12 languages out of 394)

No	Tone		Float	ting Tone		Reassocia	tion into φ
σσ	σσσ	σσfH	σσfL	σσσfΗ	σσσfL	σσσΗ3	σσσ L 3
H2	H2	H2	L2	H2	L2	H2	L2
L2	H2	H2	L2	H2	L2	H2	L2
H1	H1	H1	L1	H1	L1	H2	L2
L1	H1	H1	L1	H1	L1	H2	L2
H1	H1	H1	L1	H1	L1	H1	L1
L1	H1	H1	L1	H1	L1	H1	L1
	, .						

(26)

(26)	(26) H3 (16 tanguages out of 161 unique ones)														
	H2		H2		H2		L2		H2		L2		H2	L2	
	H2		H2		H2		L1		H2		L1		H2	L2	
	H2		H2		H1		L2		H1		L2		H2	L2	
	H2		H2		H1		L1		H1		L1		H2	L2	
	L2		H2		H2		L2		H2		L2		H2	L2	
	L2		H2		H2		L1		H2		L1		H2	L2	
	L2		H2		H1		L2		H1		L2		H2	L2	
	L2		H2		H1		L1		H1		L1		H2	L2	

3. Summary

Summary and Discussion

- if conflicting preferences for two suprasegmental elements are resolved by serial optimization, underlying elements can be optimized earlier than inserted ones
- this predicts templatic non-local accent in Mayo and Tagalog
 - in spirit similar to the Lexical Phonology account in Hagberg (2006) but based on a single ranking of independently motivated phonological constraints
- and the co-existence of different defaults in Goizueta Basque

References

- Breteler, Jereon (2018), A foot-based typology of tonal reassociation: Perspectives from synchrony and learnability, PhD thesis, Universiteit van Amsterdam.
- de Lacy, Paul (2002), 'The interaction of tone and stress in optimality theory', *Phonology* **19**, 1–32.
- Elfner, Emily Jane (2009), 'Syllabification and stress-epenthesis interactions in Harmonic Serialism', Ms. University of Massachusetts, Amherst.
- Elfner, Emily Jane (2016), Stress-epenthesis interactions in harmonic serialism, *in* J.McCarthy and J.Pater, eds, 'Harmonic Grammar and Harmonic Serialism', Equinox, pp. 261–300.
- French, Koleen Matsuda (1988), *Insights into Tagalog reduplication, infixation, and stress from nonlinear phonology*, Summer Institute of Linguistics.
- Hagberg, Larry (1989), Floating accent in Mayo, *in* S.Fulmer, M.Ishihara and W.Wiswall, eds, 'Proceedings of the Arizona Phonology Conference 2', University of Arizona.
- Hagberg, Larry (1990), 'Stem, word and phrase as morpho-syntactic strata in Mayo', SIL Language and Culture Archives.

- Hagberg, Lawrence Raymond (2006), *An Autosegmental Theory of Stress*, SIL International.
- Haraguchi, Shosuke (1991), A theory of Stress and Accent, Foris, Dordrecht.
- Hualde, José Ignacio, Oihana Lujanbio and Francisco Torreira (2008), 'Lexical tone and stress in Goizueta Basque', *Journal of the International Phonetic Association* **38**, 1–24.
- Hyman, Larry M. (2009), 'How (not) to do phonological typology: the case of pitch-accent', *Language Sciences* **31**, 213–328.
- Ito, Junko and Armin Mester (2009), The extended prosodic word, *in* B.Kabak and J.Grijzenhout, eds, 'Phonological domains: Universals and Derivations', Mouton de Gruyter, pp. 135–194.
- Kager, René (1999), Optimality Theory, Cambridge University Press, Cambridge.
- Köhnlein, Björn (2019), Metrically conditioned pitch accent in Uspanteko, *in* R.Goedemans, J.Heinz and H.van der Hulst, eds, 'The study of word stress and accent: theories, methods and data', Cambridge University Press, Cambridge, pp. 293–322.
- Kubozono, Haruo (1993), The Organization of Japanese Prosody, Kurosio, Tokyo.

- McCarthy, John (2008*a*), 'The gradual path to cluster simplification', *Phonology* **25**, 271–319.
- McCarthy, John (2008*b*), 'The serial interaction of stress and syncope', *Natural Language and Linguistic Theory* pp. 499–546.
- McCarthy, John (2010), 'Studying Gen', *Journal of the Phonetic Society of Japan* **13**, 3–12.
- McCarthy, John, Kevin Mullin and Brian Smith (2012), Implications of harmonic serialism for lexical tone association, *in* B.Botma and R.Noske, eds, 'Phonological explorations: Empirical, theoretical and diachronic issues', de Gruyter.
- McCawley, James (1968), *The phonological component of a grammar of Japanese*, Mouton, The Hague.
- Moore-Cantwell, Claire (2011), 'Contexts for epenthesis in Harmonic Serialism', talk, given at the 19th mfm.
- Pater, Joe (2012), Serial harmonic grammar and Berber syllabification, *in* T.Borowsky, S.Kawahara, T.Shinya and M.Sugahara, eds, 'Prosody Matters: Essays in Honor of Lisa Selkirk', Equinox.
- Pruitt, Kathryn (2012), Stress in Harmonic Serialism, PhD thesis, UMass Amherst.

- Ross, Martin John Elroy (1985), Japanese lexical phonology and morphology, PhD thesis, University of British Columbia.
- Schachter, Paul and Fe T. Otanes (1983), *Tagalog reference grammar*, University of California Press, Berkeley.
- Spahr, Christopher (2016), Contrastive representations in non-segmental phonology, PhD thesis, University of Toronto.
- Staubs, Robert, Michael Becker, Christopher Potts, Patrick Pratt, John McCarthy and Joe Pater (2010), 'OT-Help 2.0. software package.', Amherst, MA: University of Massachusetts Amherst.
- Torres-Tamarit, Francesc (2012), Syllabification and Opacity in Harmonic Serialism, PhD thesis, Universitat Autonoma de Barcelona.

Default Accent in Mayo

 Spanish loans are (with very few exceptions) stressed on the second vowel

(27) Spanish Loanwords in Mayo (Hagberg, 2006, 79)

S	Spanish	Mayo	
V	áca(s)	wakás	'cow'
C	ábra	kabára	'sheep'
C	lomíngo	lomínko	'Sunday'
C	liós	lióh	'God'

Mayo: An Independent Argument for the Assumed Foot Structure

 bimoraic reduplication: asymmetry for accented/unaccented stems if the first syllable is open

```
(28) Mayo reduplication (p.135+137)
```

- a. Unaccented stems: C₁VC₂ noká nok~nóka 'speak' *non~nóka bwaná bwan~bwána 'cry' *bwab~bwána
- b. Accented stems: C_1VC_1 nóka nón \sim noka 'know language' *nók \sim noka tíwe tít \sim tiwe 'be ashamed' *tíw \sim tiwe
- \rightarrow the base for reduplication is a φ (Hagberg, 2006)
 - unaccented: (noká)_φ
 - accented: (nó)_ωka

Mayo account in Hagberg (2006)

- accented words have a floating stress autosegment
- linking rule links * L to R at every cycle and delinking rule delinks it at the end of every cycle
- foot building is also cyclic (=reduplication at every cycle possible)
- the delinking rule is turned off at the end of the lexical cycles: * is hence linked to leftmost stress-bearing unit for every word containing an accented stem
- postlexical stress insertion and linking inside foot R to L (=accounts for default stress on second syllable)
- → based on coexisting L-R and R-L linking rules in a single language
- → based on principles like the 'Degenerate Foot Principle' demanding that the presence of a 'lexical accent linked to any element that is being incorporated into a foot forces that foot to become degenerate' (p.19) that seem problematic from a cross-language perspective