Gradient Symbolic Representations and the Typology of Phonological Exceptions

MIT Colloquium

February 28, 2020

Eva Zimmermann

(slides available at: https://evazimmermann.weebly.com/talks.html)

Main Claim

- The assumption of Gradient Symbolic Representations that phonological elements can have different degrees of activation allows a unified explanation for patterns of exceptions.
- This representational explanation for different phonological behaviour dispenses with true 'exceptionality': A single phonological grammar and contrasting underlying representations.
- & Four predictions set this account apart from alternatives:
 - ① Unified account for (non)undergoers and (non)triggers.
 - 2 Exceptionality for more than one process.
 - ③ Degrees of exceptionality.
 - ④ Implicational restrictions between exceptionality patterns.

Plan

- 1. Proposal
- 1.1 Gradient Symbolic Representation in Input/Output
- 1.2 GSRO: Four Predictions
- 2. Case study 1: Exceptionality in San Pedro Molinos
- 3. Case study 2: Exceptionality in Finnish
- 4. Alternatives
- 5. Summary

Proposal

5 / 88

Gradient Symbolic Representation in Input/Output (=GSRO)

- all linguistic symbols have activity that can gradiently differ and 1 is the default activity (Smolensky and Goldrick, 2016; Rosen, 2016)
- any change in activity is a faithfulness violation different activities result in **gradient violations of faithfulness**
- elements can be gradiently active in the output and thus violate markedness constraints gradiently
 (Zimmermann, 2017*a,b*; Faust and Smolensky, 2017; Jang, 2019; Walker, 2019)
- grammatical computation modeled inside Harmonic Grammar where constraints are weighted (Legendre et al., 1990; Potts et al., 2010)

GSRO: Gradient Constraint Violations

- constraints are violated/satisfied relative to the activity of the relevant elements
- **♦** elements preferably have the default activity of 1 (=*Weak, *Strong)
- & e.g. the underlyingly weakly active segment in (1)
 - is easier to delete than a fully active segment
 - is costly to realize
 - tolerates more marked structures
- (1) Gradient activity=gradient constraint violations

b ₁ a ₁ 1	t ₁ -p _{0.5}	*Weak	MaxS	DEPS	*CC	
		10	10	10	10	
a.	$b_1a_1t_1p_1$			-0.5	-1	-15
b.	$b_1a_1t_1p_{0.5}$	-0.5			-0.75	-12.5
c.	$b_1a_1p_{0.5}$	-0.5	-1			-15
r d.	b ₁ a ₁ t ₁		-0.5			-5

Only fully active S
Faithful realization of weak S
Deletion of fully active S
Deletion of weakly active S

GSRO and **Exceptions**

- if the underlying representation of a morpheme contains elements of another activity than the default activity 1, the morphemes might show different phonological behaviour
- → 'exceptions' = contrastive underlying representations

8 / 88

Gradient Symbolic Representations: Broader Context

- that linguistic elements are not categorical but have strength differences is **not a new** idea
 - (e.g. Rizzi (1986) and Koster (1986) for functional categories in syntax, Garde (1965): some lexical accent system are based on scalar grades of accent strength,...)
- other work on non-categorical elements in **neural networks** (e.g. Corina (1994) on induction of prosodic categories in neural networks)
- can also predict **phonetic gradience**(e.g. subphonemic gradience in word-final devoicing, nasal place assimilation, flapping
 (e.g. Braver, 2013), vowel harmony is gradient (McCollum, 2018),...)
- different from a binary distinction into strong/weak (Inkelas, 2015; Vaxman, 2016a,b; Sande, 2017)
- → here: predictions of gradient (=numerical) phonological strength in an OT-system as explanation for 'exceptional' behaviour

9 / 88

General Arguments for GSR(O)

- Embedded in a general computational architecture for cognition (=Gradient Symbolic Computation, Smolensky and Goldrick, 2016)
- 2. A unified account for different exceptional phonological behaviours:
 - liaison consonants in French (Smolensky and Goldrick, 2016)

 - allomorphy in Modern Hebrew (Faust and Smolensky, 2017)

 - tone allomorphy in San Miguel el Grande Mixtec (Zimmermann, 2017a,b)
 - ✓ lexical stress in Moses Columbian Salishan (Zimmermann, 2018d)
 - exceptional tone (non)spreading in San Molinos Mixtec (Zimmermann, 2018b)
 - interaction of phonological/lexical gemination/lenition in Italian (Amato, 2018)
 - compound stress in Sino-Japanese (Rosen, 2018)
 - (interacting) ghost segments in Welsh (Zimmermann, 2018c)
 - **ℐ** ...

GSRO: Four Predictions = Four Arguments

- ① A unified account for exceptional (non)undergoers and (non)triggers.
- ② Elements can be exceptional for more than one process.
- There can be different degrees of exceptionality (for the same process within a language).
- Exceptionality patterns within one language underlie implicational restrictions.

Types of Exceptions: Toy Example

(Classification into undergoers/triggers from Lakoff (1970))

A general phonological rule in Lg1: Parasitic Backness Vowel Harmony

pon-ek
$$\rightarrow$$
 ponok put-ek \rightarrow putek

VH if same height No VH if different height

- 1. Exceptional non-undergoer Same height: No VH
 - pon- et \rightarrow ponet, *ponot
- 3. Exceptional undergoer Different height: VH put- em \rightarrow putom, *putem

- 2. Exceptional non-trigger Same height: No VH ton $-ek \rightarrow tonek, *tonok$
- 4. Exceptional trigger Different height: VH
 - put -ek \rightarrow putok, *putek

① Unified Account for Exceptional (Non)Undergoers and (Non)Triggers: Our Toy Example

- (2) Max[BK]a. Assign -X violation for every input feature [back]_X without an output correspondent.
 - b. SH[BK] Assign -X violation for every pair of tier-adjacent vowels V_A and V_B with different [\pm back] specifications where -X is the mean activity $\frac{A+B}{2}$.
 - SH[BK]_{HI} Assign -X violation for every pair of tier-adjacent vowels V_A and V_B with the same specification for [\pm high] but different [\pm back] specifications where -X is the mean activity $\frac{A+B}{2}$.

Toy Example: Four Patterns of Exceptionality in GSRO

(3) 'Regular': No VH if diff. height

$p_1u_1t_1-e_1k_1$	Мах[вк] 15	Sн[вк] _{ні} 10	Sн[вк] 10	
r a. p₁u₁t₁e₁k₁			-1	-10
b. p ₁ u ₁ t ₁ o ₁ k ₁	-1			-15

(4) 'Regular': VH if same height

$p_1o_1n_1-e_1k_1$	Мах[вк]	Sн[вк] _{ні}	Ѕн[вк]	
	15	10	10	
a. $p_1o_1n_1e_1k_1$		-1	-1	-20
1 b. p₁o₁n₁o₁k₁	-1			-15

Toy Example: Four Patterns of Exceptionality in GSRO

(5) Exceptional trigger: Stronger stem-vowel enforces VH even if different height

$\frac{k_1u_3n_1}{-e_1k_1}$	Мах[вк]	Sн[вк] _{ні}	Ѕн[вк]	
	15	10	10	
a. k ₁ u ₃ n ₁ e ₁ k ₁			-2	-20
☞ b. k ₁ u ₃ n ₁ o ₁ k ₁	-1			-15

(6) Exceptional non-trigger: Weaker stem-vowel doesn't enforce VH even if same height

$t_1 o_{0.4} n_1 - e_1 k_1$	Мах[вк]	Sн[вк] _{ні}	Ѕн[вк]	
	15	10	10	
r a. k ₁ o _{0.4} l ₁ e ₁ k ₁		-0.7	-0.7	-14
b. k ₁ o _{0.4} l ₁ o ₁ k ₁	-1			-15

Toy Example: Four Patterns of Exceptionality in GSRO

(7) Exceptional undergoer:
 Weaker affix-vowel¹undergoes VH even if different height

$p_1u_1t_1-e_{0.4}m_1$	Max[bk]	Sн[вк] _{ні}	Ѕн[вк]	
	15	10	10	
a. $p_1u_1t_1e_{0.4}m_1$			0.7	-7
☞ b. p ₁ u ₁ t ₁ o _{0.4} m ₁	-0.4			-6

Abbreviation: The feature [-back] is weak, not the segment.

15 / 88

(8) Exceptional non-undergoer:Stronger affix-vowel resists VH even if same height

p ₁ o ₁ n ₁ -	e_3t_1	Мах[вк]	Sн[вк] _{ні}	Ѕн[вк]	
		15	10	10	
r a. ∣	$p_1o_1n_1e_3t_1$		-2	-2	-40
b.	p ₁ o ₁ n ₁ e ₃ t ₁	-3			-45

Four Patterns of Exceptionality and GSRO: Summary

- E_{1-x} being weaker than the 'default' element E_1
 - & exceptional undergoer since not as protected by faithfulness as E_1
 - $\stackrel{\text{\tiny 20}}{\bullet}$ exceptional non-undergoer since not inducing as much markedness violation as E_1
 - exceptional non-trigger since not inducing as much markedness violation as E₁
- E_{1+x} being stronger than the 'default' element E_1
 - $\ \ \$ exceptional undergoer since inducing more markedness violation than E_1
 - $\ensuremath{\triangleright}$ exceptional non-undergoer since protected more by faithfulness as E_1
 - $\ensuremath{\triangleright}$ exceptional trigger since inducing more markedness violation than E_1

Four Patterns of Exceptionality: Empirical Picture

1. Exceptional non-undergoers

- some M-tones resist to undergo a dissimilation into H in Kagwe (Hyman, 2010)
- some moras are non-hosts for floating tones in San Miguel el Grande Mixtec (Pike, 1944; McKendry, 2013)
- **&** ...

3. Exceptional undergoers

- only some vowels undergo V-harmony in Y. Mayan (Krämer, 2003)
- only some segments are deleted to avoid a marked structure in, e.g., Nuuchahnulth or Yawelmani (Noske, 1985; Zoll, 1996)
- **₹** ...

2. Exceptional non-triggers

- some vowels do not trigger otherwise regular ATR-harmony in Classical Manchu (Smith, 2017)
- some H-tones in Molinos Mixtec don't undergo H-spreading (Hunter and Pike, 1969)
- **&** ...

4. Exceptional triggers

- some suffixes trigger deletion of a preceding V in Yine (Pater, 2010)
- some suffixes trigger raising of a preceding low V in Assamese (Mahanta, 2012)
- **₹** ...

② Exceptionality for More than one Process: Extending our Toy Example

A general phonological rule in Lg2: Parasitic Backness Vowel Harmony

$$po-nek \rightarrow ponok$$

 $pu-nek \rightarrow punek$

VH if same height No VH if different height

Another general phonological rule in Lg2: Vowel hiatus avoidance

$$pu-ok \rightarrow pok$$

Deletion of first V

- 1. Exceptional trigger for VH
- Different height: VH

$$\frac{\mathsf{ku}}{\mathsf{nek}} \to \mathsf{kunok}, \mathsf{kunek}$$

2. Exceptional non-undergoer of VD

Vowel hiatus: No deletion

$$\frac{\mathsf{ku}}{\mathsf{ok}}$$
 -ok \rightarrow kuok, *kok

Exceptionality for More than one Process: GSRO

(9) 'Regular': No VH if diff. height

$p_1u_1-n_1e_1k_1$	*VV	MaxS	Мах[вк]	Sн[вк] _{ні}	Ѕн[вк]	
	28	20	15	10	10	
r a. p ₁ u ₁ n ₁ e ₁ k ₁					-1	-10
b. p ₁ u ₁ n ₁ o ₁ k ₁			-1			-15

(10) Exceptional trigger: Stronger stem-vowel enforces VH even if different height

$\frac{k_1u_3}{n_1e_1k_1}$	*VV	MaxS	Мах[вк]	Sн[вк] _{ні}	Ѕн[вк]	
	28	20	15	10	10	
a. k ₁ u ₃ n ₁ e ₁ k ₁					-2	-20
r b. k₁u₃n₁o₁k₁			-1			-15

Exceptionality for More than one Process: GSRO

(11) 'Regular': VD to avoid hiatus

$p_1u_1-o_1k_1$	*VV	MaxS	Мах[вк]	Sн[вк] _{ні}	Ѕн[вк]	
	28	20	15	10	10	
a. p ₁ u ₁ o ₁ k ₁	-1					-28
r b. p₁o₁k₁		-1				-20

(12) Exceptional non-undergoer: Stronger stem-vowel resists VD

k_1u_3 $-o_1k_1$	*VV 28	MaxS 20	Мах[вк] 15	Sн[вк] _{ні} 10	Sн[вк] 10	
r a. k₁u₃o₁k₁	-2					-56
b. k ₁ o ₁ k ₁		-3				-60

Exceptionality for More than one Process: GSRO

(13) Exceptional trigger:
Stronger stem-vowel enforces VH even if different height

k ₁ u ₃ -n ₁ e ₁ k ₁	*VV	MaxS	Мах[вк]	Sн[вк] _{ні}	Ѕн[вк]	
	28	20	15	10	10	
a. k ₁ u ₃ n ₁ e ₁ k ₁					-2	-20
r b. k ₁ u ₃ n ₁ o ₁ k ₁			-1			-15

(14) Exceptional non-undergoer: Stronger stem-vowel resists VD

k ₁ u ₃ -o ₁ k ₁	*VV 28	MaxS 20	Мах[вк] 15	Sн[вк] _{ні} 10	Sн[вк] 10	
☞ a. k ₁ u ₃ o ₁ k ₁	-2					-56
b. k ₁ o ₁ k ₁		-3				-60

→ The same representation /k₁u₃/ predicts exceptional behaviour for more than one process from different gradient constraint violations

③ Degrees of Exceptionality:A new toy example

Lg3 without backness harmony

```
pok-el \rightarrow pokel

pok-im \rightarrow mutel
```

No parasitic VH No non-parasitic VH

Exceptional trigger I

```
\frac{\mathsf{tom}}{\mathsf{-el}} \to \mathsf{tomol}, \mathsf{*tomel}
\frac{\mathsf{tom}}{\mathsf{-im}} \to \mathsf{tomim}, \mathsf{*tomum}
```

Triggers parasitic VH Does not trigger non-parasitic VH

Exceptional trigger II

$$\begin{array}{ccc} & \mathsf{sop} & -\mathsf{el} & \to \mathsf{sopol}, \ ^*\mathsf{sopel} \\ & \mathsf{sop} & -\mathsf{im} & \to \mathsf{sopul}, \ ^*\mathsf{supim} \end{array}$$

Triggers parasitic VH Triggers non-parasitic VH

Degrees of Exceptionality: GSRO

(15) 'Regular': No VH if diff. height

$p_1o_1k_1-i_1m_1$	Мах[вк]	Sн[вк] _{ні}	Ѕн[вк]	
	25	10	10	
r a. p ₁ o ₁ k ₁ i ₁ m ₁			-1	-10
b. p ₁ o ₁ k ₁ u ₁ m ₁	-1			-25

(16) 'Regular': No VH if same height

$p_1o_1k_1-e_1l_1$	Мах[вк]	Sн[вк] _{ні}	Ѕн[вк]	
	25	10	10	
\bowtie a. $p_1o_1k_1e_1l_1$		-1	-1	-20
b. p ₁ o ₁ k ₁ o ₁ l ₁	-1			-25

Degrees of Exceptionality: GSRO

(17) Exceptional trigger I: No VH if diff. height

$t_1 o_3 m_1 - i_1 m_1$	Мах[вк]	Sн[вк] _{ні}	Ѕн[вк]	
	25	10	10	
\square a. $t_1o_3m_1i_1m_1$			-2	-20
b. $t_1o_3m_1u_1m_1$	-1			-25

(18) Exceptional trigger I: VH if same height

t ₁ o ₃ m	<mark>ո₁ –</mark> e ₁ l ₁	Мах[вк]	Sн[вк] _{ні}	Ѕн[вк]	
		25	10	10	
a.	$t_1o_3m_1e_1I_1$		-2	-2	-40
☞ b.	$t_1o_3m_1o_1l_1$	-1			-25

Degrees of Exceptionality: GSRO

(19) Exceptional trigger II: VH if diff. height

$s_1o_5p_1 - i_1m_1$	Мах[вк]	Sн[вк] _{ні}	Ѕн[вк]	
	25	10	10	
a. $s_1o_5p_1i_1m_1$			-3	-30
☞ b. s ₁ o ₅ p ₁ u ₁ m ₁	-1			-25

(20) Exceptional trigger II: VH if same height

s_1o_5p	$-e_1I_1$	Мах[вк]	Sн[вк] _{ні}	Ѕн[вк]	
		25	10	10	
a.	$s_1o_5p_1e_1I_1$		-3	-3	-60
☞ b.	$s_1o_5p_1o_1l_1$	-1			-25

4 Implicational Relations

if all exceptionality results from differences in activity of phonological elements, not all imaginable combinations of exceptionality patterns in a language are possible: Certain exceptionality patterns imply each other

Thresholds for Exceptionality

E_{1+x+y}	→ Exceptional Behaviour X+Y		
	Stronger: Threshold 2		
E_{1+x}	→ Exceptional Behaviour X		
-	Stronger: Threshold 1		
E ₁	→ 'Normal' Behaviour		
	Weaker: Threshold 1		
E_{1-v}	→ Exceptional Behaviour V		
	Weaker: Threshold 1		
E _{1-v-w}	→ Exceptional Behaviour W		

MIT, Zimmermann

Implicational Relations between Exceptionality Patterns

- (21) If a language L has
 - a. (a) morpheme(s) that is/are exceptional₁ for process P1
 - b. and (a) morpheme(s) that is/are exceptional₁ for process P1 and exceptional₂ for process P2
 - c. there cannot be (a) morpheme(s) that is/are exceptional₂ for process P2 but not exceptional₁ for process P1

Implicational Relations: Yet Another Toy Example

Language 4 with parasitic VH and hiatus avoidance

$$po-nek \rightarrow ponok$$

 $pu-nek \rightarrow punek$
 $pu-ok \rightarrow pok$

VH if same height No VH if different height Deletion of first V

1. Exceptional trigger for VH

```
\frac{\mathsf{ku}}{\mathsf{nek}} \to \mathsf{kunok}, \mathsf{kunek}
```

VH if different height

2. Exceptional non-undergoer of VD and trigger for VH

$$pu$$
 -ok \rightarrow puok, *pok

$$pu$$
 -nek \rightarrow punok, *punek

No V-deletion to avoid hiatus

VH if different height

3. Exceptional non-undergoer of VD

$$tu$$
 -ok \rightarrow tuok, *tok

Deletion of first V No VH if different height

Language 4 is Impossible in GSRO

- (22) Normal: V with activity 1
 - a. Max[BK] > Sh[BK]

b. *HIAT > MAXS

(23)

(24)

No non-parasitic VH VD

- Exceptional 1: V with activity X
- a. $X \times Sh[BK] > Max[BK]$

*HIAT $> X \times MAXS$

Non-parasitic VH VD

- Exceptional 2: V with activity Y
 - a. $Y \times Sh[BK] > Max[BK]$

b. $Y \times MaxS > *HIAT$

Non-parasitic VH

.

- (25) *Exceptional 3: V with activity Z
 - a. $Max[BK] > Z \times Sh[BK]$

b. $Z \times MaxS > *HIAT$

No non-parasitic VH No VD

 \rightarrow Weighting paradox (Z < X and Z > X; (23) vs. (25))

MIT, Zimmermann

Case study 1: Exceptionality in San Pedro Molinos

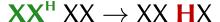
Exceptional Non-Triggers in San Pedro Molinos

- some morphemes are exceptional (optional) non-triggers of H-perturbation and exceptional non-trigger of H-spreading
 - → prediction ① existence of exceptional non-triggers
 - → prediction ② exceptionality for more than one process

Background: Tones in San Pedro Molinos (=MOL)

- all the data in the following comes from Hunter and Pike (1969) variety closely related to San Miguel el Grande Mixtec (Cf. Pike (1944); Mak (1950); Hollenbach (2003); McKendry (2013); theoretical accounts in Goldsmith (1990); Tranel (1995); Zimmermann (2018a))
- three level tones high (H; á), mid (M; ā), and low (L; à)
- (26) Tonal contrasts in MOL (Hunter and Pike, 1969, 27)

```
tātá-sá tūtā-sá tūtù-sá 'my father' 'my firewood' 'my paper'


Pùù ríkī Pùù kītī Pùù híī
```

'two woodpeckers' 'two animals' 'two fists'

Process 1: H-Perturbation

some morphemes trigger an additional H that overwrites underlying M or L of the initial TBU of a following morpheme (the 'perturbing' morphemes found in basically all Otomanguean languages (Dürr, 1987; Pike, 1944; Mak, 1950; Hollenbach, 2003; McKendry, 2013))

(27)H-overwriting

Process 1: H-Perturbation

(28)					(Hunter and Pike, 1969, 35-36)
		M1	M2	Surface	Tones
	No	n-perturb	ing morph	emes	
	a.	?ù∫ì 'ten'	rīŋkī 'mouse'	?ù∫ì rīŋkī 'ten mice'	LL MM→LL MM
	b.	$7\overline{\mu}$	sùʧī ^H 'child'	?∏ sùt∫ī 'one child'	$MM+LM^H \rightarrow MM LM$
	Pei	turbing m	orphemes	ı	11
	c.	kùù ^H 'four'	tʃìká 'baskets'	kùù tʃíká 'four baskets'	∥ LL ^H LH→LL H H
	d.	ʒ ā ʔā ^Ħ 'chiles'	ʒìʧí 'dry'	ʒā?ā ʒíʧí 'dry chiles'	MM ^H LH→MM H H
	e.	síví^H 'name'	tèē 'man'	síví t é ē 'name of the man'	HH ^H LM→HH <mark>H</mark> M
	f.	kītī ^H 'animal'	kūù 'to die'	kītī k ú ù 'the animal will die'	MM ^H ML→MM H L

Process 2: H-Spreading after Perturbation

- if a perturbing morpheme precedes a morpheme that ends in an M-toned TBU and is also perturbing, both TBU's of this morpheme become high
- (29) H-overwriting and spreading

$$XX^H XM^H \rightarrow XX HH$$

Process 2: H-Spreading after Perturbation

(30)(Hunter and Pike, 1969, 35-36) M2 Surface Tones M1 H-overwriting and spreading síví^H sùt[ī^H síví s**ú**t∫í 'name of the child' 'name' 'child' síví^H kītī^H síví k**í**tí h. 'name' 'animal' | 'name of the animal' kītī^H kāā^H kītī k<mark>áá</mark> 'animal' 'to eat' 'the animal will eat' No spreading if M2 is not M-final kùù^H ʒòò^H $k\dot{u}\dot{u}^H$ $3\dot{o}\dot{o}^H$ $k\dot{u}\dot{u}$ $3\dot{o}\dot{o}$ 'four mont(H) 'four months' No spreading if M2 has no floating H síví^H tèē síví t**é**ē 'name' 'man' 'name of the man'

Optionally Perturbing Morphemes as Exceptions

- there are three classes of morphemes in MOL:
 - 1. non-perturbing ones: XX
 - 2. perturbing ones: XX^H
 - trigger H-perturbation
 - trigger H-spreading if they end in an M
 - 3. optionally perturbing ones: XX^(H)
 - only optionally trigger H-perturbation
 - never trigger H-spreading if they end in an M
 - → not optional variation between behaving as morpheme type 1 and 2 but mixture of properties

Optionally Perturbing Morphemes: 1. Optional H-Perturbation

(31)(Hunter and Pike, 1969, 35-36) Surface M1 M2 Tones hìkī(H) $IM^{(H)}+IM\rightarrow IMHM\sim IM$ tèē hìkī t**é**ē∼tèē a. 'man' 'the man's fist' 'fist, paw' hìkī^(H) $LM^{(H)}+LM\rightarrow LM HM\sim LM$ h. tfì?ī hìkī $\mathfrak{t}[?]\sim\mathfrak{t}?$ 'skunk' 'the skunk's paw' 'fist, paw' ñùtī^(H) LM^(H)+LH→LM HH~LH ñùtī zíţí~zìţí zìʧí c.

'sand'

'dry'

'dry sand'

Optionally Perturbing Morphemes: 2. No Trigger for H-Spreading

(32)(Hunter and Pike, 1969, 36) Surface M1 M2 Tones Never a trigger... $HH^{H}+LM^{(H)}\rightarrow HHHM$ síví^H tfì?ī^(H) a. síví tí?ī 'name' 'skunk' 'name of the skunk' hìkī^(H) ʧĵʔŢ^(H) $LM^{(H)}+LM^{(H)}\rightarrow LM HM\sim LM$ b. hìkī ʧj?ī~ʧì?ī 'fist, paw' 'skunk' 'the skunk's paw' ... but always an undergoer (if realized) tʃj?ī^(H) $LM^{(H)}+MM^{H}\rightarrow LM HH\sim MM$ kāā^H tſì?ī k**áá∼**kāā 'skunk' 'to eat' 'the skunk will eat (it)' $LM^{(H)}+LM^{H}\rightarrow LM HH\sim LM$ hìkī^(H) sùtſīH d. hìkī sútlí~sùtlī 'fist' 'child' 'the child's fist'

GSRO Account: Representational Assumption

- Some morphemes in MOL end in an unassociated (=floating)
 H-tone
- \bullet The floating H of some morphemes is **fully active**: H₁
- ightharpoonup The floating H of other morphemes is **partially active**: $H_{0.4}$

41 / 88

The weakly active H_{0.4} is not a bad enough problem for the markedness constraint *[MH] triggering H-spreading

Additional Assumption: Variation and MaxEnt

- optionality is modeled with MaxEnt (Johnson, 2002; Goldwater and Johnson, 2003; Wilson, 2006)
- → both cases studies happen to involve optional variation but this optionality is in principle orthogonal to the assumption of gradient activity!
- all exemplary weights given are calculated by the UCLA Maxent Grammar Tool (Hayes, 2009)

GSRO Account: Constraints (Yip, 2002)

- (33) a. *FLOAT
 - Assign -X violation for every tone T_1 that is not associated to a TBU where X is the activity of T_1 .
 - MaxT
 Assign -X violation for any tonal activity X in the input that is not present in the output.
 - c. *Cont

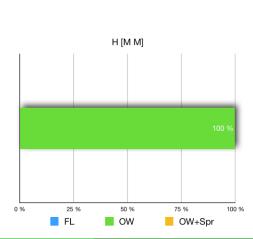
Assign -X violation for every TBU_1 associated to tones T_2 and T_3 where X is the shared activity of TBU_1 , T_2 , and T_3 .

d. Spec

Assign -1-X violations for every TBU τ_1 where X is the activity of tone(s) associated to τ_1 .

43 / 88

H-Perturbation: Realization of H₁


MAXH *CONT (34)SPEC 100 100 71 24 a. -1 -71 $\begin{array}{cccc} L_1 & L_1 & & M_1 M_1 \\ \downarrow & \downarrow & & \downarrow & \downarrow \\ \sigma_1 & \sigma_1 & & \sigma_1 & \sigma_1 \end{array}$ -1 -1 -124-1 -100 \blacksquare d. $\begin{matrix} L_1 & L_1 & H_1 & M_1 \\ \hline \phi_1 & \phi_1 & \hline \phi_1 & \hline \phi_1 \end{matrix}$ -1 -24

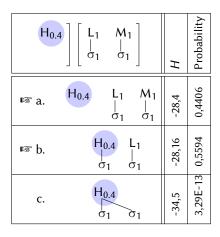
MIT, Zimmermann

MOL: Fully active H₁ is realized: Maxent probabilities

(35)

$\begin{bmatrix} \mathbf{H}_1 \\ \mathbf{I} \\ \mathbf{I} \\ \mathbf{\sigma}_1 \\ \mathbf{\sigma}_1 \end{bmatrix}$	Н	Probability
a. $ \begin{array}{c cccc} H_1 & M_1 & M_1 \\ & & & \\ & & \sigma_1 & \sigma_1 \end{array} $	-71,0	4,20E-21
⊪ b.	-24,08	0,9999
c. H ₁ σ ₁ σ ₁	-48,16	3,49E-11 0,9999

H-Perturbation: Optional Realization of H_{0.4}


(36)

$\begin{bmatrix} L_1 & MH_{0.4} \\ \dot{G}_1 & \dot{G}_1 \end{bmatrix} \begin{bmatrix} L_1 & M_1 \\ \dot{G}_1 & \dot{G}_1 \end{bmatrix}$	HXW WAXH	CONT *	* FLOAT	LXVW 24	∠ SPEC	
a. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-0.4			-28.4
■ b. L ₁ M ₁ H _{0.4} M ₁ O ₁ O ₁ O ₁				-1	-0.6	-28.2

 $0.4 \times {}^*\text{Float} \sim \text{MaxT} + 0.6 \times \text{Spec}$

MOL: H-Perturbation: Optional Realization of H_{0.4}: MaxEnt

(37)

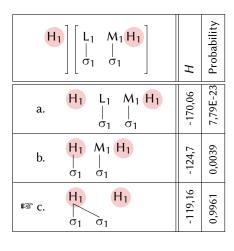
H-Spreading is Avoidance of a Marked Tone Sequence

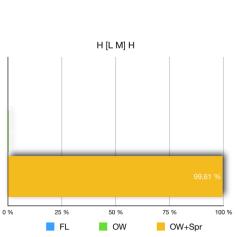
triggered by a markedness constraint against sequences of MH-tones inside a morpheme (and only spreading of floating H is a possible repair)

(38) *[MH]

Assign -X violation for every morpheme-internal sequence of M_1 and H_2 where X is the shared activity of M_1 and H_2 .

48 / 88


H-Spreading Triggered by H₁

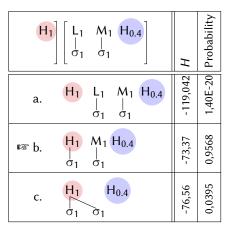

(39)

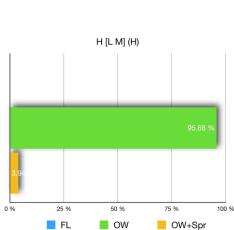
	$ \begin{bmatrix} H_1 & H_1 \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	HXYW W	* FLOAT	[HW] _*	LXWW 24	
a.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-1	-1	-1	-123
☞ b.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-1		-2	-119

H-Spreading Triggered by H₁: Probabilities

(40)

No H-Spreading Triggered by Partially Active $H_{0.4}$


(41)


$\begin{bmatrix} \mathbf{H_1} \\ \mathbf{I} \\ \mathbf{I} \\ \mathbf{I} \\ \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{L_1} & \mathbf{M_1} & \mathbf{H_{0.4}} \\ \mathbf{H_{0.1}} \\ \mathbf{H_{0.1}} \end{bmatrix}$	МахН		* [MH]		
	100	71	28	24	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-0.4	-0.7	-1	-72
b. H ₁ H _{0.4}		-0.4		-2	-76,4

MIT, Zimmermann

No H-Spreading Triggered by Partially Active H_{0.4}: Probabilities

(42)

Prediction 2: Exceptionality for Multiple Processes

- the assumption of a partially active $H_{0.4}$ predicts the **two exceptional** behaviours from gradient constraint violations
- MaxEnt correctly predicts that the gradient activity results in both variable and categorical exceptionality

Exceptional optional trigger for H-perturbation

Exceptional non-trigger for H-spreading

(45) Fully active
$$H_1$$
 (46) Partially active $H_{0.4}$ *[MH] > MaxT $MaxT > 0.7 \times *[MH]$

Prediction 4: Implicational Relations in MOL

w two additional exceptional morpheme(s) (classes) 2+4 are possible

exceptional morpheme class 5 is impossible

(47)

			HP	HS	WA: HP	WA:HS
B	1.	H ₁	~	~	*Float > MaxT	*[MH] > MaxT
	2.	$H_{0.6}$	~	(\checkmark)	$0.6 \times *$ Float $> MaxT + 0.4 \times Spec$	$0.6 \times *[MH] \sim MaxT$
rg-	3.	$H_{0.4}$	(\checkmark)	×	$0.4 imes^*$ Float \sim MaxT + $0.6 imes$ Spec	$MaxT > 0.4 \times *[MH]$
	4.	$H_{0.2}$	×	×	$MaxT + 0.8 \times Spec > 0.2 \times *Float$	$MaxT > 0.2 \times *[MH]$
*	5.	H _?	×	/	$MaxT + (1-?) \times Spec > ? \times *Float$	$\times^*[MH] > MaxT$

HS=trigger for H-spreading (if ending in
$$M$$
)

(\checkmark)=optional

Case study 2: Exceptionality in Finnish

55 / 88

Exceptional Triggers and Undergoers: Finnish

(Anttila, 2002; Pater, 2006)

- & exceptional repair for heteromorphemic /ai/ sequences
- type of repair (assimilation, deletion, or variation between both) is morpheme-specific
 - → prediction ③ degrees of exceptionality

Exceptional Triggers: Vowel Assimilation to Avoid /ai/ (Anttila, 2002)

certain /i/-initial suffixes (PL/PST) trigger raising of a preceding /a/ others (e.g. COND) don't (48-b)

(48)

	underlying	surface		
a.	pala-i	paloi	'burn'–Рsт	p.4
	tavara-i-ssa	tavaroissa	'thing'-PL-INE	p.5
	kana-i-ssa	kanoissa	'hen'-PL-INE	p.4
	kihara-i-ssa	kiharoissa	'curl'-PL-INE	p.13
	korea-i-ssa	koreoissa	'Korea'-PL-INE	p.13
	kahvi-la-i-ssa	kahviloissa	'cafe'-PL-INE	p.5
	kana-la-i-ssa	kanaloissa	'chicken shed'-PL-INE	p.5
b.	anta-isi	antaisi	'give'-Cond	(Pater, 2010, 133)

Exceptional Triggers: Vowel Deletion to Avoid /ai/ (Anttila, 2002)

for certain morphemes, the exceptional triggers result in deletion of a preceding /a/

(49)

underlying	surface		
otta–i	otti	'take'-Рsт	p.4
jumala-i-ssa	jumalissa	'God'-PL-INE	p.5
suola-i-ssa	suolissa	'salt'-PL-INE	p.6
kihara-i-ssa	kiharissa	'curly'-PL-INE	p.13
korea-i-ssa	koreissa	'beautiful'-PL-Ine	p.13
tutki–va–i–ssa	tutkivissa	'researching'-PL-INE	p.5
anta-va-i-ssa	antavissa	'giving'-PL-INE	p.5

Exceptional Triggers: Alternation between Assimilation and Deletion

for yet other morphemes, the exceptional triggers result in variation between deletion and assimilation

(50)

	underlying	surface	
itara-i-ssa	itaroissa \sim itarissa	'stingy'–PL–Ine	p.5
taitta–i	taittoi \sim taitti	'break'-Рsт	p.6
omena-i-ssa	omenoissa \sim omenissa	'apple'-PL-INE	p.9

Summary: Exceptional Triggers and Undergoers

- there are two 'classes' of (/i/-initial) suffixes:
 - NT no repair for /ai/-sequences
 - T repair for /ai/-sequences
- $\ensuremath{\ensuremath{\&}}$ there are three 'classes' of (/a/-final) morphemes:
 - A assimilation before T-suffix
 - D deletion before T-suffix
 - AD assimilation/deletion before T-suffix

(51)

a#-morphemes	outcome	#i-morphemes
A		
AD	ai	NT
D		
A	oi	
AD	oi \sim i	Т
D	i	

Caution: Only Half the Story

- phonological regularities/tendencies:
 - deletion is more likely after a round vowel
 - deletion is more likely after a labial consonant
 - phonological generalizations apply exceptionless in underived bisyllabic stems
- → Dissimilation effects: deletion avoids two high/labial sounds
- N's typically assimilate, A's typically delete

GSRO Account in a Nutshell

T vs. NT suffixes

- default activity /i₁/ doesn't induce enough violation of *ai to trigger repair
- higher activity /i₃/ results in threshold-crossing violation of *ai that triggers repair

D vs. A vs. AD

- **る** default activity /a₁/ results in assimilation
- lower activity $/a_{0.6}/$ results in deletion: weak segment wants to be avoided
- intermediate activity /a_{0.8}/ shows variable behaviour

GSRO Account in a Nutshell

(52)

a#	surface	#i
A: /a ₁ /	$[a_1i_1]$	
AD: $/a_{0.8}/$	$[a_{0.8}i_1]$	NT: /i ₁ /
D: $/a_{0.6}/$	$[a_{0.6}i_1]$	
A: /a ₁ /	[o ₁ i ₃]	
AD: $/a_{0.8}/$	$[o_{0.8}i_3]\sim[i_3]$	T: /i ₃ /
D: $/a_{0.6}/$	$[i_3]$	

GSRO Account: Constraints

- (53) a. *ai
 Assign -X violations for every [i]_X with activity X immediately preceded by an [a].
 - MAX[LW]
 Assign -X violations for every activity X of [+low] that is present in the input but not the output.
 - c. MAX[HI]
 Assign -X violations for every activity X of [+high] that is present in the input but not the output.

GSRO Account: Constraints

- (54) a. *Weak
 Assign -1-X violations for every phonological element with activity X<1.
 - *STRONG
 Assign -X-1 violations for every phonological element with activity X>1.

Avant: Segments Keep Their Underlying Activity in the Output

(55)

t ₁ a _{0.6}	DEPS	*Weak	
1 0.0	100	41	
r a. t₁a₀.6		-0.4	-16
b. t ₁ a ₁	-0.4		-40

(56)

t ₁ a ₃		MaxV 10	*Strong 1	
r⊠ a.	t ₁ a ₃		-2	-2
b.	t ₁ a ₁	-2		-20

Non-Triggering Suffix and /a₁/

a -1 violation of *ai is not important enough to trigger a repair(57)

a ₁ i ₁		Мах[ні]	*Weak	Max[LW]	*ai	MaxV	
		100	41	37	16	10	
☞ a.	a ₁ i ₁				-1		-16
b.	o ₁ i ₁			-1			-37
c.	i ₁			-1		-1	-47
d.	a ₁ e ₁	-1					-100
e.	a ₁	-1				-1	-110

Triggering Suffix and /a₁/

- the violation of *ai caused by a more active /i₃/ crosses the threshold for triggering a repair
- assimilation is optimal since V-deletion implies a superset of violations

(58)

$a_1 i_3$		*Weak	Max[LW]	*ai	MaxV	
		41	37	16	10	
a.	$a_1 i_3$			-3		-48
☞ b.	o ₁ i ₃		-1			-37
c.	i ₁		-1		-1	-47

Triggering Suffix and /a_{0.6}/

for a weak V, deletion solves the additional problem of avoiding a weak segment

(59)

a _{0.6} i ₃		*Weak	Max[LW]	*ai	MaxV	
		41	37	16	10	
a.	a _{0.6} i ₃	-0.4		-3		-64.4
b.	o _{0.6} i ₃	-0.4	-1			-53.4
☞ C.	i _{0.6}		-1		-0.6	-43

Non-Triggering Suffix and $/a_{0.6}/$

no misprediction for weak segments outside of T-suffix-contexts: marked structure of a weak V is tolerated

(60)

a _{0.6} i ₁	*Weak	Max[LW]	*ai	MaxV	
	41	37	16	10	
r a. a _{0.6} i₁	-0.4		-1		-32.4
b. o _{0.6} i ₁	-0.4	-1			-53.4
c. i ₁		-1		-0.6	-43

Triggering Suffix and $/a_{0.8}/$

V with a weak activity between those repairs: Optionality between both options*

(61)

a _{0.8} i ₃		*Weak	Max[LW]	*ai	MaxV		
		41	37	16	10		Probability
a.	a _{0.8} i ₃	-0.2		-3		-56.2	2.5782981684922935E-6
r b.	o _{0.8} i ₃	-0.2	-1			-45.2	0.5000118759256124
© C.	i ₃		-1		-0.8	-45	0.4999830712776138

 $0.2~\text{x}~^*\text{Weak} \sim 0.8~\text{x}~\text{MaxV}$

*Tableaux above: Winning candidate had a probability of at least 0.9999.

Recall: Phonological Regularities?

- account can easily integrate the account of the phonological conditions from Anttila (2002):

 - $m{\mathscr{D}}$ syllable-counting effect follows from domain-specific OCP_ROUND}- ϕ
 - e.g. categorical restriction that deletion after /o/ in even-numbered stems: high-weight of OCP_{ROUND}-φ

(Lexical Factors of) Finnish Assimilation/Deletion in GSRO: Summary

Relevant activity thresholds

(62)

i₁ – not enough to trigger a repair to avoid a violation of *ai

i₃ – threshold to avoid *ai

(63)

a₁ – default repair of assimilation

a_{0.8} – variation between assimilation and deletion

a_{0.6} – deletion

(only activity differences for /a/ and /i/ were considered: activity differences for other vowels have no interesting effect (at least not for *ai)

Alternatives

Lexically Indexed Constraints

(e.g. Ito and Mester, 1990; Golston and Wiese, 1996; Fukazawa, 1999; Pater, 2000; Pater and Coetzee, 2005; Pater, 2006; Flack, 2007; Pater, 2010)

- constraints can exist in versions indexed to (classes of) morphemes that are only violated if the scope of the violation contains material of an indexed morpheme (Pater, 2010)
- (64) Exceptional triggers and lexically indexed constraints

 The exceptional triggers are indexed to a higher-ranked markedness constraint

 SH[BK]A, SH[BK]HI >> MAX[BK] >> SH[BK]
- (65) Exceptional non-undergoers and lexically indexed constraints

 The exceptional non-undergoers are indexed to a higher-ranked faithfulness

 constraint

 MAX[BK]_R >> SH[BK]_{HI} >> MAX[BK] >> SH[BK]

Lexically Indexed Constraints and Our Four Predictions

- ① Unified account for (non)undergoers and (non)triggers ②

 - → Exceptional non-triggers/undergoers are complement set of exceptional triggers/non-undergoers (=all 'non-exceptional' morphemes are indexed)
- Exceptionality for more than one process \bigcirc
 - → Is a concidence: Morpheme (class) happens to be indexed to more than one constraint - two different explanations
- Degrees of exceptionality ©
 - → Fall out from more indexed versions of the same constraint(s)
- Implicational restrictions between exceptionality patterns

→ Don't exist e.g. $MaxS_{B,C}$, $Sh[BK]_{A,B}$, $Sh[BK]_{HI} \gg Max[BK]$, *VV $\gg Sh[BK]$, MaxS

Autosegmental Defectivity

(Lieber, 1992; Stonham, 1994; Saba Kirchner, 2010; Trommer, 2011; Bermúdez-Otero, 2012; Bye and Svenonius, 2012; Trommer and Zimmermann, 2014; Zimmermann, 2017*c*)

- morphemes can be underspecified or overspecified: Floating features/moras/tones, lack of features/moras/tones,...
- (66) Exceptional undergoers and autosegmental defectivity

 Morphemes contain underspecified elements and need specification/escape
 faithfulness: e.g. vowel without [±back] feature undergoes non-parasitic harmony
- (67) Exceptional triggers and autosegmental defectivity

 Morphemes contain floating/unassociated features, moras, tones: e.g. morphemes

 with floating [±high] feature are triggers for non-parasitic vowel harmony

Autosegmental Defectivity and Our Four Predictions

- ① Unified account for (non)undergoers and (non)triggers ②
- ② Exceptionality for more than one process ①
 - → Exceptionality is a consequence from contrastive representations
- 3 Degrees of exceptionality
 - → Severely limited by number of contrasting elements that can be lacking/floating
- 4 Implicational restrictions between exceptionality patterns
 - → Don't exist; different representational properties (underspecification, floating elements) can freely be combined

Comparison: Three Accounts of Exceptionality

(68)

	LIC	ASD	GSRO
① 4 patterns	(E)	(1)	(3)
② More than one process			
3 Degrees of exceptionality			
④ Implicational restrictions			

Summary

Summary

- the assumption of gradient activity in the output predicts the phonological exceptions from gradient faithfulness and markedness violations
- four properties of exceptionality patterns easily fall out that are hard to capture under alternatives
- outlook: activity differences can not only be a property of underlying representations, they can be derived in the phonology (Trommer, 2018*b*; Zimmermann, 2019; Walker, 2019)

References

- Amato, Irene (2018), 'A gradient view of Raddoppiamento Fonosintattico', ms., University of Leipzig.
- Anttila, Arto (2002), 'Morphologically conditioned phonological alternations', *Natural Language and Linguistic Theory* **20**, 1–42.
- Bermúdez-Otero, Ricardo (2012), The architecture of grammar and the division of labour in exponence, in J.Trommer, ed., 'The morphology and phonology of exponence: The state of the art', Oxford University Press, Oxford, pp. 8–83.
- Braver, Aaron (2013), Degrees of incompleteness in neutralization: Paradigm uniformity in a phonetics with weighted constraints, PhD thesis, Rutgers The State University of New Jersey-New Brunswick.
- Bye, Patrick and Peter Svenonius (2012), Non-concatenative morphology as epiphenomenon, *in* J.Trommer, ed., 'The morphology and phonology of exponence: The state of the art', Oxford University Press, Oxford, pp. 426–495.
- Corina, David P. (1994), The induction of prosodic constraints, in S. D.Lima, R.Corrigan and G.Iverson, eds, 'The Reality of Linguistic Rules', John Benjamins, pp. 115–145.
- Dürr, Michael (1987), 'A preliminary reconstruction of the Proto-Mixtec tonal system', *Indiana* **11**, 19–61.
- Faust, Noam and Paul Smolensky (2017), 'Activity as an alternative to autosegmental association', talk given at mfm 25, 27th May, 2017.
- Flack, Kathryn (2007), 'Templatic morphology and indexed markedness constraints', *Linguistic Inquiry* **38**, 749–758.
- Fukazawa, Haruka (1999), Theoretical implications of OCP effects in feature in optimality theory, PhD thesis, University of Maryland at College Park.
- Garde, Paul (1965), 'Accentuation et morphologie', La Linguistique 1, 25-39.
- Goldsmith, John (1990), Autosegmental and Metrical Phonology, Blackwell, Oxford.

- Goldwater, Sharon and Mark Johnson (2003), Learning ot constraint rankings using a maximum entropy model, *in J. Spenader*, A. Eriksson and O. Dahl, eds, 'Proceedings of the Workshop on Variation within Optimality Theory', Stockholm University, Stockholm, pp. 111–120.
- Golston, Chris and Richard Wiese (1996), 'Zero morphology and constraint interaction: subtraction and epenthesis in German dialects', *Yearbook of Morphology 1995* pp. 143–159.
- Hayes, Bruce (2009), 'Manual for maxent grammar tool', online available at http://linguistics.ucla.edu/people/hayes/MaxentGrammarTool/ManualForMaxentGrammarTool.pdf.
- Hollenbach, Barbara (2003), The historical source of an irregular Mixtec tone-sandhi pattern, in M. R.Wise, T.Headland and R.Brend, eds, 'Language and life: essays in memory of Kenneth L. Pike', SIL International, Dallas, pp. 535–552.
- $Hunter, Georgia\ and\ Eunice\ Pike\ (1969),\ 'The\ phonology\ and\ tone\ sandhi\ of\ Molinos\ Mixtec',\ \textit{Linguistics}\ .$
- Hyman, Larry (1985), A theory of phonological weight, Foris Publications, Dordrecht.
- Hyman, Larry M. (2010), Do tones have features?, in J. G.et al., ed., 'Tones and Features (Clements memorial volume)', de Gruyter, Berlin, pp. 50-80.
- Inkelas, Sharon (2015), Confidence scales: A new approach to derived environment effects, in Y. E.Hsiao and L.-H.Wee, eds, 'Capturing Phonological Shades Within and Across Languages', Cambridge Scholars Publishing, Newcastle upon Tyne, pp. 45–75.
- Ito, Junko and Armin Mester (1990), The structure of the phonological lexicon, in N.Tsujimura, ed., 'The Handbook of Japanese Linguistics', Blackwell, Malden, pp. 62–100.
- Jang, Hayeun (2019), 'Emergent phonological gradience from articulatory synergies: simulations of coronal palatalization', talk, presented at the LSA 2019, New York, January 05, 2019.
- Johnson, Mark (2002), Optimality-theoretic lexical functional grammar, in S.Stevenson and P.Merlo, eds, 'The Lexical Basis of Sentence Processing: Formal, Computational and Experimental Issues', John Benjamins, Amsterdam, pp. 59-73.

- Kenstowicz, Michael and Jerzy Rubach (1987), 'The phonology of syllabic nuclei in Slovak', *Language* **63**, 463–497.
- Koster, Jan (1986), 'The relation between pro-drop, scrambling, and verb movements', Ms., Rijksuniversiteit Groningen.
- Krämer, Martin (2003), Vowel Harmony and Correspondence Theory, Mouton de Gruyter.
- Kushnir, Yuriy (2017), 'Accent strength in Lithuanian', talk, given at the workshop on Strength in Grammar, Leipzig, November 12, 2017.
- Lakoff, George (1970), Irregularity in Syntax, Holt, Rinehart and Winston.
- Legendre, Geraldine, Yoshiro Miyata and Paul Smolensky (1990), 'Harmonic grammar a formal multi-level connectionist theory of linguistic well-formedness: Theoretical foundations', *Proceedings of the 12th annual conference of the cognitive science society* pp. 388–395.
- Lieber, Rochelle (1992), Deconstructing Morphology, Chicago: University of Chicago Press.
- Mahanta, Shakuntala (2012), 'Locality in exceptions and derived environments in vowel harmony', Natural Language and Linguistic Theory 30, 1109-1146.
- Mak, Cornelia (1950), 'A unique tone perturbation in Mixteco', International Journal of American Linguistics 16, 82–86.
- McCollum, Adam (2018), 'Gradient morphophonology: Evidence from Uyghur vowel harmony', talk at AMP 2018, San Diego, October 06, 2018.
- McKendry, Inga (2013), Tonal Association, Prominence and Prosodic Structure in South-Eastern Nochixtlán Mixtec, PhD thesis, University of Edinburgh.
- Nformi, Jude and Sören Worbs (2017), 'Gradient tones obviate floating features in Oku tone sandhi', talk at the Workshop on Strength in Grammar, Leipzig, November 10, 2017.
- Noske, Roland (1985), Syllabification and syllable changing processes in Yawelmani, in H.van der Hulst and N.Smith, eds, 'Advances in Nonlinear Phonology', Foris, pp. 335–361.

- Pater, Joe (2000), 'Nonuniformity in English stress: the role of ranked and lexically specific constraints', *Phonology* **17**(2), 237–274.
- Pater, Joe (2006), The locus of exceptionality: Morpheme-specific phonology as constraint indexation, *in* L.Bateman, M.O'Keefe, E.Reilly and A.Werle, eds, 'Papers in Optimality Theory III', GLSA, Amherst, MA, pp. 259–296.
- Pater, Joe (2010), Morpheme-specific phonology: Constraint indexation and inconsistency resolution, in S.Parker, ed., 'Phonological Argumentation: Essays on Evidence and Motivation', Equinox, London, pp. 123–154.
- Pater, Joe and Andries Coetzee (2005), 'Lexically specific constraints: gradience, learnability, and perception', *Proceedings of the 3rd Seoul International Conference on Phonology* pp. 85–119.
- Pike, Kenneth L. (1944), 'Analysis of a Mixteco text', *International Journal of American Linguistics* **10**, 113–138.
- Potts, Christopher, Joe Pater, Karen Jesney, Rajesh Bhatt and Michael Becker (2010), 'Harmonic grammar with linear programming: From linear systems to linguistic typology', *Phonology* pp. 77–117.
- Rizzi, Luigi (1986), 'Null objects in Italian and the theory of pro', *Linguistic Inquiry* 17, 501–57.
- Rosen, Eric (2016), Predicting the unpredictable: Capturing the apparent semi-regularity of rendaku voicing in Japanese through Harmonic Grammar, *in* E.Clem, V.Dawson, A.Shen, A. H.Skilton, G.Bacon, A.Cheng and E. H.Maier, eds, 'Proceedings of BLS 42', Berkeley Linguistic Society, Berkeley, pp. 235–249.
- Rosen, Eric (2018), 'Evidence for gradient input features from Sino-Japanese compound accent', poster, presented at AMP 2018, San Diego, October 06, 2018.
- Saba Kirchner, Jesse (2010), Minimal Reduplication, PhD thesis, UC Santa Cruz.

- Sande, Hannah (2017), Distributing morphologically conditioned phonology: Three case studies from Guébie, PhD thesis, University of California, Berkeley.
- Sloan, Kelly Dawn (1991), Syllables and Templates: Evidence from Southern Sierra Miwok, PhD thesis, MIT.
- Smith, Caitlin (2017), 'Harmony triggering as a contrastive property of segments', *Proceedings of AMP* 2016.
- Smolensky, Paul and Matthew Goldrick (2016), 'Gradient symbolic representations in grammar: The case of French liaison', Ms, Johns Hopkins University and Northwestern University, ROA 1286.
- Stonham, John (1994), Combinatorial morphology, John Benjamin, Amsterdam.
- Tranel, Bernard (1995), 'Rules vs. constraints: a case study', ROA 72.
- Tranel, Bernard (1996), Exceptionality in Optimality Theory and final consonants in French, in K.Zagona, ed., 'Grammatical Theory and Romance Languages: Selected papers from the 25th Linguistic Symposium on Romance Languages (LSRL XXV)', John Benjamins, Amsterdam, pp. 275–291.
- Trommer, Jochen (2011), 'Phonological aspects of Western Nilotic mutation morphology', Habilitation, Leipzig University.
- Trommer, Jochen (2018a), 'The layered phonology of Levantine Arabic syncope', poster, presented at AMP 2018, San Diego, October 07, 2018.
- Trommer, Jochen (2018b), 'The layered phonology of Levantine Arabic syncope', talk at the Workshop on Cyclic Optimization, Leipzig, May 18, 2018.
- Trommer, Jochen and Eva Zimmermann (2014), 'Generalised mora affixation and quantity-manipulating morphology', *Phonology* **31**, 463–510.

- Trommer, Jochen and Eva Zimmermann (2018), 'The strength and weakness of tone: A new account to tonal exceptions and tone representations', invited talk, given at the Phorum, UC Berkeley, March 19, 2018.
- Vaxman, Alexandre (2016a), Diacritic weight in the extended accent first theory, in 'University of Pennsylvania Working Papers in Linguistics', University of Pennsylvania.
- Vaxman, Alexandre (2016b), How to Beat without Feet: Weight Scales and Parameter Dependencies in the Computation of Word Accent, PhD thesis, University of Connecticut.
- Walker, Rachel (2019), 'Gradient feature activation and the special status of coronals', talks, presented at PΦF 2019, April 05, 2019.
- Wilson, Colin (2006), 'Learning phonology with substantive bias: An experimental and computational study of velar palatalization', Cognitive Science 30, 945–982.
- Yearley, Jennifer (1995), Jer vowels in Russian, in J.Beckman, L.Walsh Dickey and S.Urbanczyk, eds, 'Papers in Optimality Theory', GLSA Publications, Amherst, Mass., pp. 533-571.
- Yip, Moira (2002), Tone, Cambridge University Press.
- Zimmermann, Eva (2017a), 'Being exceptional is being weak: tonal exceptions in San Miguel el Grande Mixtec', poster, presented at AMP 2017, New York, September 16, 2017.
- Zimmermann, Eva (2017b), 'Gradient symbols and gradient markedness: a case study from Mixtec tones', talk, given at the 25th mfm, 27th May, 2017.
- Zimmermann, Eva (2017c), Morphological Length and Prosodically Defective Morphemes, Oxford University Press, Oxford.
- Zimmermann, Eva (2018a), Being exceptional is being weak: Tonal exceptions in San Miguel el Grande Mixtec, in G.Gallagher, M.Gouskova and S. H.Yin, eds, 'Proceedings of AMP 2017', LSA, http://dx.doi.org/10.3765/amp.

- Zimmermann, Eva (2018b), 'Exceptional non-triggers are weak: The case of Molinos Mixtec', talk at OCP 15, January 13, 2018.
- Zimmermann, Eva (2018c), 'Gradient symbolic representations and the typology of ghost segments: An argument from gradient markedness', talk, given at AMP 2018, San Diego, October 06, 2018.
- Zimmermann, Eva (2018*d*), Gradient symbolic representations in the output: A case study from Moses Columbian Salishan stress, *in* S.Hucklebridge and M.Nelson, eds, 'Proceedings of NELS 48', pp. 275–284.
- Zimmermann, Eva (2019), 'Faded copies: Reduplication as sharing of activity', talk, to be given at OCP 16
- Zoll, Cheryl (1996), Parsing below the segment in a constraint-based framework, PhD thesis, UC Berkeley.

Eva.Zimmermann@uni-leipzig.de

Appendix: GSRO and true gradience

- & no inherent restriction on gradient contrasts within a language
 - 3 types of segments in Welsh:

$$/k_{1.0}/ - /r_{0.6}/ - /g_{0.2}/$$

3 types of association lines in Oku (Trommer and Zimmermann, 2018): $/H_{-1.0}$ • / - /H_{-0.6} • / - /H_{-0.4} • /

- ✓ 4 (derived) segment types in Levantine Arabic (Trommer, 2018*b*): $\frac{1}{10.7} \frac{1}{10.6} \frac{1}{10.5} \frac{1}{10.3}$
- 5 types of feet in Moses Columbian Salish (Zimmermann, 2018*d*): $\frac{1}{9}$ $\frac{1}{9}$

ws. alternatives

- most accounts based on autosegmental defectivity that only allow a binary distinction into [±defective] (e.g. Hyman, 1985; Noske, 1985; Kenstowicz and Rubach, 1987; Sloan, 1991; Yearley, 1995; Tranel, 1996; Zoll, 1996)
- accounts that adopt 'strength' as a binary division (Inkelas, 2015; Vaxman, 2016a,b; Sande, 2017)

Open Question: The source for strength in GSR

- & lexical contrast for phonological elements
- lexical contrast for whole morphemes (Faust and Smolensky, 2017)
- **&** derived in the phonology:
 - 'Gradient representations can mature or decay across layers' (Trommer, 2018b)

 - floating strength strengthens elements (Amato, 2018)
 - fission is weakening/distribution of activity (Zimmermann, 2019)
 - certain features have an inherent strength and feature change thus implies strength adjustment (Walker, 2019)

MOL: No repair possible for *[MH] without a floating H

- simply deleting a tone is excluded by Specify (=Spec)
- & deleting a tone and inserting one is excluded by DepT
- spreading an underlying tone of the same morpheme is excluded by ALTERNATION
- spreading an underlyingly associated tone of a preceding morpheme is excluded by *Long_{MBound} (69)
- (69) a. *LGT_M: Assign X violations for every tone T₁ that is associated to two TBU's τ_2 and τ_3 of different morphological affiliations where X is the shared activity of T₁, τ_2 , and τ_3 .
 - b. SPEC: Assign 1-X violations for every TBU τ_1 where X is the activity of tone(s) associated to τ_1 .

MOL: No repair possible for *[MH] without a floating H

 *LGT_M M_1 *[MH] H_1 MAXT DEPT SPEC (70)ALT 100 100 28 24 100 M_1 H_1 **☞** a. -1 -28 H_1 b. -1 -1 -124 H_1 -1 -124 c. -1 σ_1 ό1 σ1 M_1 d. -1 -124 -1 **φ**₁ H_1 e. -1 -1 -31

 σ_1

Finnish: Actual Constraint weights calculated with the UCLA Maxent Grammar Tool Hayes (2009)

- (71) a. Max[HI] =4.959766016953511
 - b. *Weak =4.146982826416971
 - c. Max[LW] = 3.738127939601154
 - d. *ai = 1.6518845656104975
 - e. MaxV = 1.0367529078026307
 - f. *Strong =0.01389397830012214