Gradient Symbolic Representations in the Output

A typology of lexical exceptions

Eva Zimmermann Leipzig University

UNIVERSITÄT LEIPZIG

NELS 48 October 29th, 2017 University of Iceland Reykjavík

Main Claim

- the assumption of Gradient Symbolic Representations in the Output predicts a typology of attested lexical exception patterns
- the presence of elements with more then two different grades of activity predicts the complex stress system in Moses Columbia Salish
- such a representational account correctly predicts that elements with different activity behave exceptional for more than one process

1. Gradient Symbolic Representations

- 2. Case study: Moses Columbia Salish Stress
- 2.1 Data: Lexical stress in MCS
- 2.2 Analysis based on gradient activity
- 2.3 Further evidence: Vowel deletion asymmetries

3. Summary and Conclusion

Gradient Symbolic Representations

Background: Gradient Symbolic Representation

(=GSR; Smolensky and Goldrick, 2016; Rosen, 2016)

- symbols in a linguistic representation can have different degrees of presence or numerical activities
- this can predict **lexical exceptions**: elements in the underlying representation of a morpheme can be exceptionally weak
- assumption modifying the original GSR-account: output elements can be weakly active as well (Zimmermann, 2017*a*,*b*): GSRO (no explicit argument for this assumption in the MCS analysis)

Gradient Symbolic Representations and HG

- any change in activity is a faithfulness violation
- every marked structure M violates a markedness constraint by the number that equals M's activity
- grammatical computation inside Harmonic Grammar (Legendre et al., 1990; Potts et al., 2010)

(1)

b ₁ a	1t ₁ -p _{0.5}	*CC] $_{\sigma}$	DEP	Max	
		3	2	1	
a.	$b_1a_1t_1p_{0.5}$	-0.5			-1.5
☞ b.	$b_1a_1t_1$			-0.5	-0.5
c.	$b_1a_1p_{0.5}$			-1	-1
d.	$b_1a_1t_1\theta_1p_{0.5}$		-1		-2
e.	$b_1a_1t_1p_1$	-1	-0.5		-4

Gradience in the output: Predicted typology of exceptions

Underlying	Phon.	Оитрит	e.g.						
1. Exceptional	repair: W	eak element	not realized						
$A_1 + B_{0.6}$	*AB	A ₁	Nuuchahnulth unstable C's (Kim, 2003)						
$A_1 + B_1$		A_1B_1							
2. Exceptional									
$A_1 B_{0.6} + A_1$	*AA	$A_1 B_{0.6} A_1$	Catalan exceptional u-realization (Bonet et al., 2007)						
$A_1 B_{0.6} + C_1$		A_1C_1							
3. Exceptional non-trigger: Weak element not repaired									
$A_1 + B_{0.6}$	*AB	A ₁ B _{0.6}	Cl. Manchu exceptional non-triggers for ATR-harmony (Smith, 2017)						
$A_1 + B_1$		A_1C_1	ATR-harmony (Smith, 2017)						
			ment does not change						
$A_1^A + B_{0.6}$	*X ^A	A ₁ B _{0.6}	SMG Mixtec exceptional non-hosts for floating tones; GSRO analysis in (Zimmermann, 2017 <i>a</i> , <i>b</i>)						
$A_1^A + B_1$		A ₁ A ₁	tones; GSRO analysis in (Zimmermann, 2017 <i>a,b</i>)						
5. Lexical supp	ort								
A ₁ B _{0.6} A ₁ B _{0.6} + B _{0.6}	*Weak!	A ₁	Japanese Rendaku voicing only if stem and suffix						
$A_1 B_{0.6} + B_{0.6}$		A ₁ B _{0.6}	trigger it; GSR analysis in Rosen (2016)						
6. True compe									
$A_{0.8} + C_1$	1ELEM!	C ₁	→ MCS case study						
$A_{0.8} + B_{0.6}$		A _{0.8}							

Argument 1: More than two grades of activity

- in most accounts that directly implement some concept of strength, only a **binary** division into strong and weak is relevant (Inkelas, 2015; Vaxman, 2016*a,b*; Sande, 2017)
- → true gradience of activity is argued to account for the stress system of Moses Columbia Salish where feet with 5 different degrees of activity compete for realization

Argument 2: Exceptionality for more than one process

- such a representational account where exceptionality follows from a property of the underlying representation predicts that elements can be exceptional for multiple phonological processes
- → borne out in the case study of MCS where vowel deletion treats the same morpheme types differently as stress assignment

(2)

	Fully active consonant	Exceptional weak consonant
	Affix 1: /-k ₁ /	Affix 2: /-p _{0.5} /
	$/b_{1}a_{1}t_{1}-k_{1}/$	/b ₁ a ₁ t ₁ -p _{0.5} /
Epenthesis	[batək]	[batp]
	$/t_1u_1n_1-k_1-o_1/$	$/t_1u_1n_1-p_{0.5}-o_1/$
Nasal Ass.	[tuŋko]	[tunpo]

Case study: Moses Columbia Salish Stress

Moses Columbia Salish

(Kinkade, 1982; Czaykowska-Higgins, 1985, 1993*a*,*b*, 2011; Willett, 2003, =MCS)

- a single main-stressed syllable in every word
- isolation (3-a+b)

the default-stress position is the **rightmost** syllable for stems in

- prefixes are never stressed; even if they contain the only full V (3-c)
- (3) Default stress (Czaykowska-Higgins, 1993a, 205+225)
 - a. hananík 'jackrabbit'
 - b. q'aláχ 'fence'
 - c. ni?wəpwə́pəlqs ni?-wp~wp=lqs Loc-Red-hair=nose 'hair in nose'

Vowel epenthesis and deletion

there is vowel epenthesis:

- e.g. weak CC-roots always have an epenthetic V between stem-C's
- e.g. epenthesis before /?/
- quality predictable: e.g. i/_j, a/_?, \ni elsewhere,...)
- (4) nq'ij'apána? n-q'j'=ap=an? Loc-write=bottom=ear 'branded on the cheek' (215)

unstressed V's are **deleted** if they follow the stressed V

(5) ka∫ħújtʃnmncn
ka∫-<u>ħuj</u>=tʃin-min-t-ʃi-n
unrealized-irritate=mouth-relational-TR-2Sc.O-1Sc.S
'I'm going to bother you (by mouth)' (202)

(stem=underlined)

Lexically determined stress in Salish

- hierarchy of stress-preferences based on a lexical two-way-distinction for stems and affixes into:
 - dominant 'D' and recessive 'R' suffixes
 - strong 'S' and weak 'W' stems
 - \rightarrow D-Sfx \gg S-stem \gg {R-Sfx, W-stem}
- very similar systems in all Interior Salishan languages except Lillooet (Idsardi, 1991; Czaykowska-Higgins and Kinkade, 1998)

Lexically determined stress in MCS

'he's moving' (208)

- (6) a. p'i∫tł'a'a'ák∫t (S-Ď)

 p'i∫tł'?=ak∫t

 big.PL=hand

 'big hands' (229)
 - b. \int atf\(\text{im'} x \text{ax}^\text{w} \\ \int atf\(-\frac{2\text{im'} x}{2\text{mix}} \text{mix} \\ \text{lpfv-move-lpfv} \end{atf}\(-\frac{1}{2\text{im'} x} \text{mix} \\ \text{lpfv-move-lpfv} \end{atf}\)
 - c. ʃatʃím'xəx^w (S-Ď-R)
 kaʃ-p'iq=tʃin-tʃut-mix
 unrealized-cook=food-Refl-IPFV
 'he's going to cook' (209)

Further distinction for stems: E-stems

- E-stems are stressed if directly followed by one D-suffix
- but loose stress to a D-suffix if at least one other suffix intervenes
- - c. xatmʃʧút (SE-R-Ď)

 xat-min-ʃtu-tʃut
 raise-relational-CAUS-REFL
 - 'he's raising up' (271)

Lexically determined stress: Interim summary

(8)

	S	W	SE	WE
a.	Ś (-R)-R	W(-R)- Ŕ	SÉ(-R)-R	WÉ -R
b.	S-Ď	W-Ď	SÉ -D	WÉ -D
c.	S- Ď -R(-R)	W- Ď -R(-R)	SÉ-D-R(-R)	
d.	S-D(-D)- Ď	W-D(-D)- Ď	SE-D(-D)-Ď	WE-D(-D)-Ď
e.			SE-R-Ď	

Asymmetry: Intervening suffix between E-stem and D or not

- hierarchy: $SE/WE \sim D \gg S \gg \{R, W\}$
- multiple suffixes of the type that should be stressed: the rightmost one receives stress

Additional suffix-type R*: Stress-attracting R-suffixes

two suffixes behave like R-suffixes except that they attract stress even though they are not the rightmost in a sequence of R-suffixes

k^wú∮nmn (9)(Ś-R*) a. k^wu∮n-min-t-ø-n borrow-relational-CTR-TR-3.O-1Sc.S 'I'm borrowing it' (251) $(W-D-\dot{D}-R^*)$ b. tfqəna?qímntfn tfq=an?=qin-min-t-fi-n hear=ear=head-relational-TR-2SG.O-1SG.S 'I heard about you' (251) jərmí∫tm $(W-\hat{R}^*-R)$ С. jr-min-∫tu-ø-n push-relational-CAUS-3.O-1PL.S 'We push him' (252)

Additional suffix-type D*: Stress-attracting D-suffixes

D*-suffixes behave like D-suffixes except that they are stressed when adjacent to an SE/WE-stem

```
(10)
                                                                                                   (S-\dot{\mathbf{D}}^*-R)
                  ptyujútija?∫n
           a.
                  ptiγuj=utj?-∫tu-ø-n
                  spit=?-Caus-3.O-1Sg.S
                  'I spittled on them' (270)
                  wak<sup>w</sup>túłn
                                                                                                    (SE-D*)
           b.
                  wak<sup>w</sup>-tuł-t-ø-n
                  hide-redirective-TR-3.O-1SG.S
                  'I hid it from s.o.' (256)
                                                                                                   (WE-Ď*)
                  t'əłwíl'x
           С.
                  t'l-wil'x
                  dirty-inch
                  'sth. used until it got dirty' (256)
```

Lexically determined stress: Summary

11)		S	W	SE	WE	
11)	a.	Ś (-R)-R	W(-R)- Ŕ	SÉ(-R)-R	WÉ -R	(D, R)
	b.	S-Ď	W-Ď	SÉ -D	WÉ -D	
	c.	S- Ď -R(-R)	W- Ď -R(-R)	SÉ-D-R(-R)		
	d.	S-D(-D)-Ď	W-D(-D)- Ď	SE-D(-D)-Ď	WE-D(-D)-Ď	
	e.			SE-R-Ď		
	f.	Ś-R*	W-Ŕ*			(D, R, R*)
	g.		W- Ŕ *-R			
	h.		W(-D)- Ď -R*	SÉ -D-R*(-R)		
	i.		W-R*-Ď			
	j.			SE-Ď*	WE-Ď*	(D, R, D*)
	k.			SE-D-Ď*		
	1.	S- Ď *-R				
	m.			SE-Ď*-R*		(D, R, D*, R*)

D* vs. D and R* vs. R

hierarchy: $D^* \gg SE/WE \sim D \gg S \gg R^* \gg \{R, W\}$

Summary: The challenges

lexical stress system with a preference hierarchy:

$$D^* \gg \underbrace{SE/WE}_{COOR} \sim D \gg S \gg R^* \gg \{R, W\}$$

an apparent locality threshold for E-stems: only stressed if no D-suffix follows separated by at least one other suffix

A cyclic account in Czaykowska-Higgins (1993a)

- a cyclic account inside the metrical framework of Halle and Vergnaud (1987a,b)
- crucial contrast: cyclic (=D) vs. non-cyclic (=R) suffixes: the former trigger stress deletion and new assignment of stress
- different stress rules assigning left- or rightmost stress
- E-stems assign extrametricality to an adjacent morphemes
- R*- and D*-suffixes are lexically accented

The analysis in a nutshell: Competition

morphemes have no or underlying feet of different strengths in their underlying representation (difference between strong/weak stems = underlying V/only epenthetic V)

(12)

Fully a	active φ		\leftarrow Weaker ϕ $ ightarrow$					
SE	/WE	D*	D	S	R* R/W			
Ψ1	φ1	φ _{0.9}	φ _{0.8}	φ _{0.6}	φ _{0.4}			
SE WE D*		D*	D	S	R*	R	W	

- competition for φ-realization: most active one is preferably realized
- (13) Max- ϕ :
 Assign a violation mark for every input ϕ without an output correspondent.

Two other (opposing) stress preferences

- (14) a. VSTEM ('Stress the stem-vowel!')
 Assign a violation mark for every main-stressed vowel that is not preceded and followed by stem-segments.
 - b. RM_{Col} ('Stress is **rightmost**!') Assign a violation mark for every morphemic colour α that intervenes between the right word edge and the stressed vowel that is not of morphemic colour α .
 - c. RM_V ('Stress is rightmost!')
 Assign a violation mark for every V^* that intervenes between the right word edge and the stressed vowel that is not of morphemic colour α .
 - → two versions of Richtmost: asymmetry between R- and D-suffixes and abundant V-deletion in Salish

(*Underlying vowel. Modelled in containment theory (Prince and Smolensky, 1993; Zimmermann, 2017c)).

→ gang-effect in HG for E-stems: stems are preferably stressed but stress can't be too far away from the right word-edge

Realization of the only underlying ϕ

(15)

	ρ _{0.8} D R			Мах-ф	Ý _{Sтем}	RM _{CoL}	RM _V	Дер-φ	
				100	30	30	16	5	
a.	W	D	φ ₁ R	-0.8	-1			-1	-115
ı≊ b.	W	φ _{0.8}	R		-1	-1			-60
c.	φ ₁	D	R	-0.8		-2	-1	-1	-161

(epenthetic=grey background)

Preservation of the ϕ with the highest activity

(16)

φ _{0.6} S	φ _{0.9} D*	φ _{0.4} R*		Мах-ф	Ý _{STEM}	RM _{CoL}	RM _V	Dер-φ	
				100	30	30	16	5	
a.	S	D*	Ψ _{0.4} R*	-1.5	-1				-180
ı⊠ b.	S	φ _{0.9} D*	R*	-1	-1	-1			-160
c.	φ0.6 S	D*	R*	-1.3		-2	-1		-206

E-stems: A gang effect

- * stress on an **E-stem** is more preferred than stress on a D-suffix by both Max- ϕ and \acute{V}_{STEM}
- if, however, more than one suffix intervenes between an E-stem and a D-suffix, stress would be too far away from the right edge and is realized on the **D-suffix** instead
- → a gang-effect in HG

has a higher weight than									
$0.2 \times Max-φ + \acute{V}_{STEM}$ \gg $RM_{Col} + RM_{V}$ Cf. (17)									
and									
$2 \times RM_{Col} + RM_{V}$ \gg $0.2 \times Max-\varphi + \acute{V}_{STEM}$ Cf. (18)									

Gang effect I: Stress on E-stem with one D-suffix

(17)

φ ₁ SE	φ _{0.8}		Мах-ф	Ý _{Sтем}	RM_{Col}	RM _V	Дер-φ	
			100	30	30	16	5	
a.	SE	φ _{0.8} D	-1	-1				-130
r≋ b.	φ ₁ SE	D	-0.8		-1	-1		-126

Gang effect II: Stress on D-suffix if more suffixes intervene

(18)

φ ₁ SE	R	φ _{0.8} D		Мах-ф	Ý _{Ѕтем}	RM _{CoL}	RM_V	Дер-φ	
				100	30	30	16	5	
☞ a.	SE	R	φ _{0.8}	-1	-1				-130
b.	SE	φ ₁	D	-1.8	-1	-1	-1	-1	-261
c.	φ1 SE	R	D	-0.8		-2	-1		-156

Interim Summary

the representations (19) predict the position of main stress: Underlying feet of different activity compete for stress realization

(19)

Fully a	active φ		Νο φ				
SE,	/WE	D*	D	S R*		R/W	
φ1	φ1	φ _{0.9}	φ0.8	φ0.6	φ _{0.4}		
SE	SE WE		D	S	R*	R	W

- this representational account predicts exceptional behaviour of weakly active elements for more than one process:
 - → evidence from facts about vowel deletion/secondary stress that these is indeed the case

Vowel deletion asymmetry: E-stems and D-suffixes

- unstressed V's are sometimes deleted if they precede the stressed V
 - the unstressed V of a D-suffix is deleted between an SE-stem and a stressed D-suffix (20-a)
 - but the unstressed V of a D-suffix is only variably/for some speakers deleted between a W-stem and a stressed D-suffix (20-b)
- (20) a. $k + f'aw | q^w q n ak f t m$ (SE-Dø-Dø- $\acute{\mathbf{D}}$) $k + f'aw = a | q^w = q i n = ak f t m$ Loc-wash=pole=Top=arm-Mid
 - 'wash wrists' (246) b. kjər'jər'qnalq^wákʃtn
 - b. $kjər'jər'qnalq^W\dot{a}kftn$ $(W-D_{V/\emptyset}-D_{$

Secondary stress

optional secondary stress can be found on:

'bulge on side of face' (249)

- stem vowels
- suffix vowels preceding the main stress
- → in the context where vowel deletion applies optionally
- (21) a. ni?k'əmàn'kàkst (W-Ď_{V/ø}-Ď)

 ni?-k'm=ank=akst
 Loc-surface.of=flat=hand
 'palm of hand' (246)

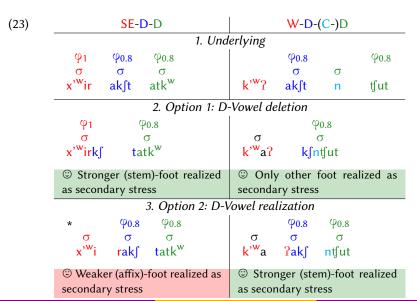
 b. nməq'^wàpána?
 n-mq'^w=ap=an?
 Loc-bulge=base=ear

secondary stress is what saves those vowels from deletion!

Account: Second foot blocks vowel deletion

suffix-vowels without main stress can optionally be realized if they are integrated into a foot (=secondary stress)

Underlying form (22)


$$\begin{array}{cccc} \phi_{0.8} & \phi_{0.8} \\ \sigma & \sigma \\ k'^{\text{w}}? & ak\mathfrak{f}t & n & \mathfrak{f}ut \\ W & D & C & D \end{array}$$

Option 1: D-Vowel realization | Option 2: D-Vowel deletion

Possibility of a second foot in a word

- implicit assumption so far: feet compete for realization since only a single foot is possible (consequence from, for example, ER-L/R (McCarthy, 2003))
- if the responsible constraint is (at least optionally) lower-weighted two feet in a word are possible:
 - avoids vowel deletion of unstressed affix-V
 - is better for Max- φ because more feet are realized
 - but is only possible if the secondary-stress φ is not stronger than the main-stress φ (*AsymmetricStrengthφ)
 - and maximally two feet in a word are possible

Possibility of a second foot in a word

Only the stronger foot can become a secondary stress

a second foot can 'save' a D-suffix-V following a W-stem but not one following an SE-stem: being able to save a suffix-vowel from deletion is not a good enough reason to realize the weaker φ

(24)

 φ1 φ0.8 φ0.8 σ σ σ x'*ir ak∫t atk* 	Мах-ф	Max-V	
	100	10	
Ψ1 Ψ0.8 σ σ x' ^w irk∫ tatk ^w	-0.8	-1	-90
θο.8 φο.8 b. σ σ σ x' ^w i rak∫ tatk ^w	-1		-100

 \rightarrow again, simple **competition** about which φ is realized; only in another domain (=secondary stress and avoidance of vowel deletion)

Summary and Conclusion

Summary

- lexical stress system in MCS follows from assuming 6 different types of underlying foot structure for morphemes
 - position of main stress follows from competition about φ-realization
 - exceptionality of E-stems is a threshold-effect in HG
- this representational account also predict exceptional behaviour for vowel deletion: exceptionality for multiple processes
 - (=argument against lexically indexed constraints (e.g. Alderete, 2001; Pater, 2009; Finley, 2009): It is a coincidence that at least two different constraints are indexed to the same class of (exceptional) morphemes)
- the argument for **GSR(O)** is strengthened in showing that this predicted type of exceptionality is borne out as well

Gradience in the output: Predicted typology of exceptions

Underlying	Phon.	Оитрит	e.g.	
1. Exceptional repair: Weak element not realized				
$A_1 + B_{0.6}$	*AB	A ₁	Nuuchahnulth unstable C's (Kim, 2003)	
$A_1 + B_1$		A_1B_1		
2. Exceptional repair: Weak element realized				
$A_1 B_{0.6} + A_1$	*AA	$A_1 B_{0.6} A_1$	Catalan exceptional u-realization (Bonet et al., 2007)	
$A_1 B_{0.6} + C_1$		A_1C_1		
3. Exceptional non-trigger: Weak element not repaired				
$A_1 + B_{0.6}$	*AB	A ₁ B _{0.6}	Cl. Manchu exceptional non-triggers for	
$A_1 + B_1$		A ₁ C ₁	Cl. Manchu exceptional non-triggers for ATR-harmony (Smith, 2017)	
4. Exceptional non-target: Weak element does not change				
$A_1^A + B_{0.6}$	*X ^A	A ₁ B _{0.6}	SMG Mixtec exceptional non-hosts for floating tones; GSRO analysis in (Zimmermann, 2017 <i>a</i> , <i>b</i>)	
$A_1^A + B_1$		A ₁ A ₁	tones; GSRO analysis in (Zimmermann, 2017a,b)	
5. Lexical support				
A ₁ B _{0.6}	*Weak!	A ₁	Japanese Rendaku voicing only if stem and suffix	
$A_1 B_{0.6} + B_{0.6}$		A ₁ B _{0.6}	trigger it; GSR analysis in Rosen (2016)	
6. True competition				
$A_{0.8} + C_1$	1ELEM!	C ₁	→ MCS case study	
$A_{0.8} + B_{0.6}$		A _{0.8}		

References

- Alderete, John (2001), Morphologically governed accent in Optimality Theory, Routledge, New York.
- Bonet, Eulàlia, Maria-Rosa Lloret and Joan Mascaró (2007), 'Allomorph selection and lexical preferences: Two case studies', *Lingua* 117(6), 903–927.
- Czaykowska-Higgins, Ewa (1985), 'Predicting stress in Columbian Salish', ICSNL 20.
- Czaykowska-Higgins, Ewa (1993a), 'Cyclicity and stress in Moses-Columbia Salish (Nxa'amxcin)', Natural Language and Linguistic Theory 11, 197–278.
- Czaykowska-Higgins, Ewa (1993b), The phonology and semantics of CVC reduplication in Moses-Columbian Salish, *in* A.Mattina and T.Montler, eds, 'American Indian Linguistics and ethnography in honor of Laurence C. Thompson', UMOPL, pp. 47–72.
- Czaykowska-Higgins, Ewa (2011), The morphological and phonological constituent structure of words in Moses-Columbia Salish (Nxa?amxcín), *in* E.Czaykowska-Higgins and M. D.Kinkade, eds, 'Salish Languages and Linguistics: Theoretical and Descriptive Perspectives', de Gruyter Mouton, Berlin, Boston, pp. 153–196.
- Czaykowska-Higgins, Ewa and Marvin Dale Kinkade (1998), Salish languages and linguistics, *in* E.Czaykowski-Higgins and M.Kinkade, eds, 'Salish languages and linguistics: theoretical and descriptive perspectives', de Gruyter, Berlin, New York, pp. 1–68.
- Finley, Sara (2009), 'Morphemic harmony as featural correspondence', Lingua 119, 478-501.
- Halle, Morris and Jean-Roger Vergnaud (1987a), An essay on stress, MIT Press, Cambridge, MA.
- Halle, Morris and Jean-Roger Vergnaud (1987b), 'Stress and the cycle', *Linguistic Inquiry* 18, 45–84.
- Idsardi, William (1991), 'Stress in Interior Salish', Chicago Linguistics Society 27, 246-260.

- Inkelas, Sharon (2015), Confidence scales: A new approach to derived environment effects, in Y. E.Hsiao and L.-H.Wee, eds, 'Capturing Phonological Shades Within and Across Languages', Cambridge Scholars Publishing, Newcastle upon Tyne, pp. 45–75.
- Kim, Eun-Sook (2003), Theoretical issues in Nuu-chah-nulth phonology and morphology (British Columbia), UMI, Ann Arbor, MI.
- Kinkade, M. Dale (1982), 'Transitive inflection in (Moses) Columbian Salish', Kansas Working Papers in Linguistics 7, 49–62.
- Legendre, Geraldine, Yoshiro Miyata and Paul Smolensky (1990), 'Harmonic grammar a formal multi-level connectionist theory of linguistic well-formedness: Theoretical foundations', *Proceedings of the 12th annual conference of the cognitive science society* pp. 388–395.
- McCarthy, John (2003), 'Ot constraints are categorical', *Phonology* **20**, 75–138.
- Pater, Joe (2009), Morpheme-specific phonology: Constraint indexation and inconsistency resolution, in S.Parker, ed., 'Phonological Argumentation: Essays on Evidence and Motivation', Equinox, London, pp. 123–154.
- Potts, Christopher, Joe Pater, Karen Jesney, Rajesh Bhatt and Michael Becker (2010), 'Harmonic grammar with linear programming: From linear systems to linguistic typology', *Phonology* pp. 77–117.
- Prince, Alan and Paul Smolensky (1993), 'Optimality theory: Constraint interaction in generative grammar', Technical reports of the Rutgers University Center of Cognitive Science.
- Rosen, Eric (2016), Predicting the unpredictable: Capturing the apparent semi-regularity of rendaku voicing in Japanese through harmonic grammar, *in* E.Clem, V.Dawson, A.Shen, A. H.Skilton, G.Bacon, A.Cheng and E. H.Maier, eds, 'Proceedings of BLS 42', Berkeley Linguistic Society, pp. 235–249.

- Sande, Hannah (2017), Distributing morphologically conditioned phonology: Three case studies from Guébie, PhD thesis, University of California, Berkeley.
- Smith, Caitlin (2017), 'Harmony triggering as a contrastive property of segments', *Proceedings of AMP 2016*.
- Smolensky, Paul and Matthew Goldrick (2016), 'Gradient symbolic representations in grammar: The case of French Liaison', *ROA 1286*.
- Vaxman, Alexandre (2016a), 'Diacritic weight in the extended accent first theory', *University of Pennsylvania Working Papers in Linguistics* 22.
- Vaxman, Alexandre (2016b), How to Beat without Feet: Weight Scales and Parameter Dependencies in the Computation of Word Accent, PhD thesis, University of Connecticut.
- Willett, Marie Louise (2003), A grammatical sketch of Nxa'amxcin (Moses-Columbia Salish), PhD thesis, University of Victoria.
- Zimmermann, Eva (2017*a*), 'Being exceptional is being weak: tonal exceptions in San Miguel el Grande Mixtec', poster, presented at AMP 2017, New York, September 16, 2017.
- Zimmermann, Eva (2017b), 'Gradient symbols and gradient markedness: a case study from Mixtec tones', talk, given at the 25th mfm, 27th May, 2017.
- Zimmermann, Eva (2017c), Morphological Length and Prosodically Defective Morphemes, Oxford University Press, Oxford.