Faded Copies: Reduplication as Distribution of Activity Reduplication as Distribution of Activity

Eva Zimmermann Universität Leipzig OCP 16, Verona January 17, 2019

(Slides available at https://evazimmermann.weebly.com/talks.html)

Main Claim

Assumptions

- 1. All linguistic symbols have activity that can gradiently differ (Smolensky and Goldrick, 2016; Rosen, 2016).
- 2. Reduplication is fission to fill empty prosodic nodes (e.g. Marantz, 1982).
- 3. Fission is distribution of underlying activity.

Consequences

- 1. Reduplication is weakening of all elements involved in the copying.
- 2. Every copy operation gradiently weakens elements.

- 1. Copying as Weakening: Empirical Picture
- 1.1 Reduction and Copying
- 1.2 Multiple Copying as Gradient Weakening
- 2. Copying as Weakening: Theoretical Modeling
- 2.1 Assumptions
- 2.2 Consequence: Faithfulness Thresholds
- 2.3 Example: Reduction under Multiple Reduplication
- 3. Discussion

Footnote: Terminology for Phonological Account of Reduplication

Copying as Weakening: Empirical Picture

Reduction and Reduplication

1. Copying = Weakening

a. TETU in the copy-exponent

(McCarthy and Prince, 1995; Becker and Flack Potts, 2011)

e.g. Gitksan, Shuswap, Sanskrit...

b. TETU in the the copied base

(Shaw and Howe, 1999; Struijke, 2000)

e.g. Tohono O'odham, Heiltsuk, Mainland Sliammon,...

c. TETU in both copy-exponent and the the copied base (Struijke, 2000)

e.g. Kwakwala, Hausa, Lushootseed,...

2. Multiple Copying = Further Weakening

(Zimmermann, 2018e,d)

TETU only under multiple reduplication

e.g. Sikaiana, Southern Wakashan,...

Reduction in the Copy Exponent: Gitksan

- fixed segmentism reduplication with /i/ and /a/ (adjacent to a gutturals)
- deglottalization (+predictable voicing), deaffricativization, and depalatalization in the copy-exponent
- (2) Plural reduplication (Brown, 2008, 147+148)

```
m'ats m i s \sim m' a ts 'to hit, strike'
t'u:ts'xw d i s \sim t' u: ts' xw 'be black'
ma\int x^w m i s \sim m a \int x^w 'white'
i\int xw a s \sim i \int xw 'stink, smell'
```

Reduction in the Copied Base: Tohono O'odham

- (3) Plural reduplication (Shaw and Howe, 1999; Fitzgerald, 2012)
 - a. *Syncope in the copied base: Single V*

jípos-ìd jí
$$\sim$$
 j po∫ìd 'to brand object' S2
tóki tó \sim t ki 'cotton' S2
dápk dá \sim d pk 'to press down with fingers repeatedly' F451

b. Syncope in the copied base: Diphtongs

		_	
híopčig	$hi \sim h$ opčig	'to be full of body lice in one place'	F716
?íoldakùd	2 í \sim 2 oldakù $ ext{d}$	'bean pot used for frying beans'	F716
dóa	dó ∼ d a	'to be healthy'	

c. Syncope blocked for phonotactic reasons (e.g. sonority reversal in coda)

,	J <u> </u>	(8	,
hím	$\frac{hi}{n}$ hi m	'walking' *hí∼hm	S 3
wáŋgo	wá \sim pa $_{ m lgo}$	ʻbank'*wá∼pŋgo	S 3
pílsa	pí ∼ pi lsa	ʻblanket' *pí∼plsa	S3

Syncope in Copy-Exponent and Copied Base: Kwak'wala (simplified)

- (4) /m'uːt/ 'refuse, useless' suffixation (Struijke, 2000; Saba Kirchner, 2010)
 - a. *C-deletion/V-reduction in the copied base (S72)*

```
səl səl sə muxt 'drill'
kən kən kə muxt 'scoop up'
k'axp k'ax k'ə pm'uxt '(mouse) gnaw'
qəns qən qə sm'uxt 'adze with long-handled adze'
```

b. *C-deletion/V-reduction in the copy exponent (S77)*

```
məndz mə ~ mən dzəmu:t 'leavings after cutting kindling woods' qw'a:l' qw'ə ~ qw'a: l'əmu:t 'embers' sa:qw' sə ~ sa: qw'əmu:t 'peelings'
```

- H=V: or sonorant coda; reduction thus ensures unmarked iambic feet (LH, LL, H) and avoids stress clashes
- repairs are bound to copying: e.g. (ts'óː)(l'èm)(y'àː) (S70)

Truncation in Multiple Reduplication Contexts: Sikaiana

- (5) Repetitive reduplication (Donner, 2012, 23+24)
 - a. Bisyllabic repetitive reduplication

```
sopo sopo~sopo 'jump'
sepu sepu~sepu 'dive'
motu motu~motu 'snap'
```

b. *CV/C-reduplication in the plural*

sopo
$$s \sim so po$$
 $so \sim so po$ 'jump' sepu $s \sim se pu$ 'dive' moe $m \sim mo e$ 'sleep'

c. Obligatory C-reduplication if both are combined

```
sopo sopo\sim s \sim so po *sopo\simso\simsopo 'jump' sepu sepu\sim s \sim se pu *sepu\simso\simsepu 'dive'
```

Copying as Weakening: Theoretical Modeling

Copying as Weakening: Assumptions

- 1. Phonological account of reduplication: Segmental fission
- 2. Gradient Symbolic Representation
- 3. HG
- 4. Containment
- 5. Fission is Distribution of Activity

1. Reduplication results from Prosodic Affixation

(Marantz, 1982; Pulleyblank, 2009; Saba Kirchner, 2010, 2013a,b)

- reduplicative morphemes contain segmentally empty prosodic nodes that are filled with 'copied' elements
- copying is the general phonological repair of segmental **fission** violating (6) (Spaelti, 1997; Struijke, 2000; Gafos, 2003; Nelson, 2003)
- (6) INT_S: Assign -1 violation to every pair of output segments that correspond to the same input segment.

(7)

μ μ s ₁ i ₂ l' ₃	μ>S	DEPS	*Vː	Ints
a.	*!	 		
□ μ μ s ₁		 		**

2. Gradient Symbolic Representation (Smolensky and Goldrick, 2016; Rosen, 2016)

- symbols in a linguistic representation can have different activities
- in the following, all output activity is 1 (GEN or constraint cf. later)
- different activities result in gradient faithfulness violations
 - weakly active elements are easier to delete than 'normal' segments
 - it is costly to realize weakly active elements
- (8) Gradient activity = gradient faithfulness violations

b a 1	t - p 1) (.5)	*CC	Max	DEP
a.	b a t p ① ① ① ①	-1		-0.5
☞ b.	b a t		-0.5	
c.	b a p (1) (1) (1)		-1	-0.5

Intermezzo: Max and DEP and GSR

- (9) a. DEP: For every pair of corresponding input output elements with underlying activity I and an output activity O where I<O: Assign -(O-I) violations.
 - Max: For every pair of corresponding input output elements with underlying activity I and an output activity O where I>O: Assign -(I-O) violations.

- 3. Harmonic Grammar (Legendre et al., 1990; Potts et al., 2010)
 - constraints are weighted, not ranked: Constraint ganging and threshold effects
- 4. Containment (Prince and Smolensky, 1993/2004)
 - non-realization of an element is setting its activity to zero (=gray)
 - non-realized elements can be enough to fill prosodic nodes

(10)

μ μ μ s o p o o (1) (1) (1) (1)	μ>S 100	Int _S	
	100	10	
μ μ μ (□③) a. s o~s o p o ① ① ① ① ① ①		-2	-20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-2	-20

5. Fission is Distribution of Activity

- (11) GEN operation: Fission Input element S_1 with activity A corresponds to x output elements S_1 with underlying activity A/x.
 - elements that result from fission necessarily have an activity
 smaller than 1 that corresponds to input activity
 - = all output correspondents of S_1 have the same amount of activity that corresponds to input activity

5. Fission is Distribution of Activity

crucial consequence for elements with the same underlying activity:
 Non-realization of a copied segment is better for Max; they are weaker

Predicted Typology: Reduction Thresholds

(14)

Lg 1: Always Reduction (e.g. Palauan)

(15) DeletePenult! \gg Max

		DELETEPENULT!	A4 434	
		DELETEPENULT!	Max	
		1000	100	
N. D. I	s а р о			1000
NoRed-a.	1 1 1 1	-1		-1000
™ NoRed-b.	s a p o 1) (1) (1) (1)		-1	-100
1xRed-a.	s a~s a p o (5 (5 (5 (5 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1	-1		-1000
™ 1xRed-b.	s a~s a p o 5 5 5 5 1 1 +5 +5 +5 -5		-0.5	-50
2xRed-a.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1		-1000
☞ 2xRed-b.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-0.3	-33.3

Lg 2: Only Reduction if Reduplication (e.g. Tohono O'odham)

(16) Max \gg DeletePenult! and DeletePenult! $\gg 0.5$ xMax

		DELETEPENULT!	Max 100	
™ NoRed-a.	s a p o ① ① ① ①	-1		-99
NoRed-b.	s a p o ① ① ① ①		-1	-100
1xRed-a.	s a~s a p o (5) (5) (5) (1) (1) +.5) +.5 +.5 +.5	-1		-99
™ 1xRed-b.	s a~s a p o 5 5 5 5 5 1 1 +5 +5 +5 -5		-0.5	-50
2xRed-a.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1		-99
☞ 2xRed-b.	s a~s a~s a p o ③ ③ ③ ③ ③ ③ ① ① ① + ō + ō + ō + ō + ō - 5		-0.3	-33.3

Lg 3: Only Reduction if Multiple Reduplication (e.g. Sikaiana)

(17) $0.5xMax \gg DeletePenult!$ and $DeletePenult! \gg 0.\bar{3}xMax$

		DELETEPENULT!	Max 200	
™ NoRed-a.	s a p o ① ① ① ①	-1		-99
NoRed-b.	s a p o ① ① ① ①		-1	-200
™ 1xRed-a.	s a~s a p o .5 .5 .5 .5 .1 1 +.5 +.5 +.5 +.5	-1		-99
1xRed-b.	s a~s a p o 5 5 5 5 5 1 1		-0.5	-100
2xRed-a.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1		-99
☞ 2xRed-b.	s a~s a~s a p o ③ ③ ③ ③ ③ ③ ① ① ①		-0.3	-66.ē

Lg 4: No Reduction (e.g. Papapana)

(18) $0.\bar{3}xMax \gg DeletePenult!$

		DELETEPENULT!	Max 1000	
™ NoRed-a.	s a p o ① ① ① ①	-1		-100
NoRed-b.	s a p o 1) 1) 1) 1)		-1	-1000
™ 1xRed-a.	s a~s a p o (5 (5 (5 (5 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1	-1		-100
1xRed-b.	s a~s a p o (5 (5 (5 (5 (1 1)))) (1 1) +.5 +.5 +.55		-0.5	-500
☞ 2xRed-a.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1		-100
2xRed-b.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-0.3	-333.3

Sikaiana Syncope

Pattern

- syncope for the monosyllabic copy-exponent is optional for single reduplication and obligatory for multiple reduplication
- (19) a. INT_{OCP}: Assign -1 violation to every pair of output segments that correspond to the same input segment and are adjacent on their tier.
 - MAX_{STR}: For ever input element with activity I and its stressed output correspondent with activity O where I>O: Assign -(I-O) violations.

Sikaiana: No Syncope for Single Reduplication (bisyllabic)

(20) $0.5xMax \gg 0.5xDep$

	σ σ s ο p ο ① ① ① ①	Max _{Str}	Max	Dep	INTOCP	
		1000	100	46	27	
r⊗ a.	σ σ σ σ s o p o~s o p o \$ (\$ (\$ (\$ (\$ (\$ (\$ (\$ (\$ (\$ (\$ (\$ (\$ (\$			-4		-184
b.	s o p o~s o p o \$ 3 \$ 5 \$ 5 \$ 5		-0.5	-3.5		-211

Sikaiana: Optional Syncope for Single Reduplication (monosyllabic)

(21)
$$0.5xDep + Int_{OCP} = 0.5xMax$$

μ	μ μ s o p o (1) (1) (1)	Max _{Str}	Max	DEP	Int _{OCP}	
		1000	100	46	27	
r® a.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			-2	-1	-119
r≊ b.	μ μ μ μ s o p o s s o p o s s o p o o s s o p o o s s o p o o o s s s s		-0.5	-1.5		-119
C.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.5	-0.5	-1.5		-619

^{*}Simplification of the optionality that can be modeled in, e.g. MaxEnt (Johnson, 2002; Goldwater and Johnson, 2003; Wilson, 2006).

Sikaiana: Syncope in Multiple Reduplication Contexts

(22) $0.\overline{6}xDep + Int_{OCP} \gg 0.\overline{3}xMax$

	σσ σ σ μ μ μ s o p o (1) (1) (1)	Max _{Str}	Max	Dep	INTOCP	
	(1) (1) (1) (1)	1000	100	46	27	
a.	σ σ σ σ σ μ μ μ μ μ μ s o p o~s o~s o p o 3 3 5 3 3 3 3 3 5 5 -6 -6 -6 -5 -5 -6 -6 -6 -6 -5 -5			-5.9	-1	-302,9
r≊ b.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-0.3	-5.3		-278,6
C.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.3	-0.3	-5.3		-611,9

Discussion

Further Predictions

- The same typology expected for phonotactic copying (Kawahara, 2007; Kitto and de Lacy, 1999)
- If output elements can have weak activity and thus violate markedness gradiently (cf. Zimmermann (2018*a*,*c*,*b*); vs. Smolensky and Goldrick (2016); Rosen (2016)), copy-exponents and copied bases are predicted to **tolerate** more marked structure
 - e.g. marked structures in copy-exponent in Oowekyala (Howe, 2000)
 - e.g. copy-exponents as exceptional non-undergoers in Mojeño Trinitario (Rose, 2014; Marquardt, 2018)
- Complete reduction in copy-exponent and copied base?
 - systematically attested as subtraction
 - e.g. Aymara accusative /wawa + Acc/ -> [waw]

Conclusion

- extending a phonological account of reduplication based on segmental fission with the assumption that fission is distribution of underlying activity correctly predicts
 - the typology of reduction in copy-exponents and/or copied bases
 - the gradient effect of more copying=more weakening in the typology of multiple reduplication (main advantage over an alternative based on Existential Faithfulness (Struijke, 2000))

References

- Becker, Michael and Kathryn Flack Potts (2011), The emergence of the unmarked, *in* M.van Oostendorp, C. J.Ewen, E.Hume and K.Rice, eds, 'The Blackwell Companion to Phonology', Wiley Blackwell, chapter 58.
- Brown, Jason (2008), Theoretical aspects of Gitksan phonology, PhD thesis, University of British Columbia.
- Donner, Wiliam W. (2012), 'Sikaiana dictionary', Ms., online available at the sikaianaarchives.
- Fitzgerald, Colleen (2012), 'Prosodic inconsistency in Tohono O'Odham', *International Journal of American Linguistics* **435-463**(78).
- Gafos, Adamantios I. (2003), 'Greenberg's asymmetry in Arabic: a consequence of stems in paradigms', Language 79, 317–355.
- Goldwater, Sharon and Mark Johnson (2003), Learning ot constraint rankings using a maximum entropy model, *in J. Spenader*, A. Eriksson and O.Dahl, eds, 'Proceedings of the Workshop on Variation within Optimality Theory', Stockholm University, Stockholm, pp. 111–120.
- Howe, Darin (2000), Oowekyala segmental phonology, PhD thesis, University of British Columbia.
- Johnson, Mark (2002), Optimality-theoretic lexical functional grammar, in S.Stevenson and P.Merlo, eds, 'The Lexical Basis of Sentence Processing: Formal, Computational and Experimental Issues', John Benjamins, Amsterdam, pp. 59-73.
- Kawahara, Shigeto (2007), 'Copying and spreading in phonological theory: Evidence from echo epenthesis', *UMOP: Papers in Optimality Theory* **32**, 111–143.

- Kitto, Catherine and Paul de Lacy (1999), 'Correspondence and epenthetic quality', *Proceedings of AFLA* 4, 181–200.
- Legendre, Geraldine, Yoshiro Miyata and Paul Smolensky (1990), 'Harmonic grammar a formal multi-level connectionist theory of linguistic well-formedness: Theoretical foundations', *Proceedings of the 12th annual conference of the cognitive science society* pp. 388–395.
- Marantz, Alec (1982), 'Re reduplication', Linguistic Inquiry 13, 483-545.
- Marquardt, Christine (2018), 'Opacity in Mojeño Trinitario reduplication: A Harmonic Serialism account', talk, presented at GLOW 42, Budapest, April 11, 2018.
- McCarthy, John and Alan Prince (1995), Faithfulness and reduplicative identity, in J.Beckman, L.Dickey and S.Urbanczyk, eds, 'UMOP', GLSA, Amherst, MA, pp. 249–384.
- Nelson, Nicole Alice (2003), Asymmetric Achoring, PhD thesis, Rutgers University.
- Potts, Christopher, Joe Pater, Karen Jesney, Rajesh Bhatt and Michael Becker (2010), 'Harmonic grammar with linear programming: From linear systems to linguistic typology', *Phonology* pp. 77–117.
- Prince, Alan and Paul Smolensky (1993/2004), Optimality Theory: Constraint Interaction in Generative Grammar, Blackwell, [first circulated as Prince & Smolensky (1993) Technical reports of the Rutgers University Center of Cognitive Science].
- Pulleyblank, Douglas (2009), Patterns of reduplication in Yoruba, *in* K.Hanson and S.Inkelas, eds, 'The nature of the word: Studies in honor of Paul Kiparsky', MIT Press, pp. 311–357.

- Rose, Francoise (2014), When vowel deletion blurs reduplication in Mojeño Trinitario, *in* G. G.Gómez and H.van der Voort, eds, 'Indigenuous languages of South America', Brill, Leiden, pp. 375–399.
- Rosen, Eric (2016), Predicting the unpredictable: Capturing the apparent semi-regularity of rendaku voicing in Japanese through Harmonic Grammar, *in* E.Clem, V.Dawson, A.Shen, A. H.Skilton, G.Bacon, A.Cheng and E. H.Maier, eds, 'Proceedings of BLS 42', Berkeley Linguistic Society, Berkeley, pp. 235–249.
- Saba Kirchner, Jesse (2010), Minimal Reduplication, PhD thesis, UC Santa Cruz.
- Saba Kirchner, Jesse (2013*a*), 'Minimal reduplication and reduplicative exponence', *Morphology* **23**, 227–243.
- Saba Kirchner, Jesse (2013b), Reduplicative exponence and minimal reduplication, in J.Trommer, ed., 'New theoretical tools in the modeling of morphological exponence', Special issue of Morphology, pp. 227–243.
- Shaw, Patricia A. and Darin Howe (1999), 'Prosodic faithfulness: vowel syncope and reduction as output-output correspondence', Paper presented at the Annual Meeting of the Canadian Linguistics Association, Université du Québec, Sherbrooke, QC, June 4-6, 199.
- Smolensky, Paul and Matthew Goldrick (2016), 'Gradient symbolic representations in grammar: The case of French liaison', Ms, Johns Hopkins University and Northwestern University, ROA 1286.
- Spaelti, Phillip (1997), Dimensions of variation in multi-pattern reduplication, PhD thesis, UC Santa Cruz.

- Struijke, Caro (2000), Existential Faithfulness. A Study of Reduplicative TETU, Feature Movement, and Dissimilation, PhD thesis, University of Maryland at College Park.
- Wilson, Colin (2006), 'Learning phonology with substantive bias: An experimental and computational study of velar palatalization', *Cognitive Science* **30**, 945–982.
- Zimmermann, Eva (2018a), 'Exceptional non-triggers are weak: The case of Molinos Mixtec', talk at OCP 15. Ianuary 13. 2018.
- Zimmermann, Eva (2018b), 'The gradience of ghosts: An account of unstable segments', talk at mfm 26, Manchester, May 26, 2018.
- Zimmermann, Eva (2018c), 'Gradient symbolic representations and the typology of ghost segments: An argument from gradient markedness', talk, given at AMP 2018, San Diego, October 06, 2018.
- Zimmermann, Eva (2018d), 'Too much is too much... in the phonology!', ms. UBC Vancouver.
- Zimmermann, Eva (2018e), 'The typology of multiple reduplication an argument for a prosodic affixation account', invited talk at the Linguistics Colloquium, University of Victoria, April 12, 2018.

Eva.Zimmermann@uni-leipzig.de