Stronger and thus more beautiful: The phonological strength of templates

OCP 2020, Warsaw

February 05, 2020

Eva Zimmermann

(slides available at: https://evazimmermann.weebly.com/talks.html)

OCP 2020, Zimmermann

Stronger and thus more beautiful

- So Different morphological templates of a language can reflect the same prosodic category but can still be phonologically different.
- The shape of a prosodic node with more activity is stronger restricted by markedness than one with weaker activity which predicts different templates within the same language.
- A case study of templates in Ibibio shows how the assumption of three different strength-specifications for feet avoids the assumption of morpheme-specific constraints (Akinlabi and Urua, 2002).

Morphological templates

Templatic requirements about the prosodic shape of (parts of) a word Play an important role in the productive morphology of many languages.

Morphological templates in Ibibio IMPERATIVE NEGATIVE: HL sé 'look' nséïsé 'l am not looking' wèim 'flowing' wèimé '... not flowing'

Emergence of the Unmarked (=TETU) and templates

- early work in Prosodic Morphology: Explicit prosodic specifications for different templates (e.g. McCarthy and Prince, 1986; Archangeli, 1991)
- rise of OT (Prince and Smolensky, 1993/2002): Markedness constraints are obeyed in a template that can be violated outside of the template and unmarked structure emerges

(McCarthy and Prince, 1994; Downing, 2006; Urbanczyk, 2006)

The TETU perspective and morphologically distinct templates

- morphologically distinct templates of the same prosodic category in a single language are excluded: There is only a single unmarked shape for every prosodic category
- & But they do exist!
 - Arabic (McCarthy and Prince, 1990; McCarthy, 1993), Southern Sierra Miwok (Broadbent, 1964), German (Wiese, 2001), Ibibio (cf. below),...

		Imperative		Negative: HL	
2	a .	sé	'look'	nsérvé	'I am not looking'
		wèːm	'flowing'	wèːmé	'not flowing'
		Imperative		Reflexive: LL	
k	Э.	Imperative kό	'gather'	REFLEXIVE: LL kó೪၁ဴ	'be gathered'

(2) More templates in Ibibio

Plan

- 1. Morphologically Distinct Templates
- 2. Theoretical Proposal: Gradient Symbolic Representations
- 3. Ibibio
- 3.1 Data
- 3.2 GSR account
- 4. More morphologically distinct templates
- 5. Summary

Theoretical Proposal: Gradient Symbolic Representations

Gradient Symbolic Representation (=GSR)

- All linguistic symbols have activity that can gradiently differ with 1=fully active. (Smolensky and Goldrick, 2016; Rosen, 2016)
- Any change in activity is a faithfulness violation different activities result in gradient violations of faithfulness.
- Elements can be weakly active in the output and thus violate markedness gradiently.

(Zimmermann, 2017*a*,*b*; Faust and Smolensky, 2017; Jang, 2019; Walker, 2019)

Srammatical computation modeled inside Harmonic Grammar where constraints are weighted. (Legendre et al., 1990; Potts et al., 2010)

GSR: Gradient Constraint Violations

(Cf. Walker (2019) for potential problems and scaling factors as an alternative)

- 𝗞 Weakly active segments:
 - they are easier to delete than 'normal' segments
 (=MAXS violated to a lesser degree in (3-d) than (3-c))
 - it is costly to realize them
 (=activity inserted (3-a) or weak activity in the output (3-b+c))
 - they tolerate more marked structures
 (=cluster is 'worse' in (3-a) than in (3-b)

(3) Gradient Activity=gradient constraint violations

b1a1t1-p0.5	Full!	MaxS	DepS	*CC		
	10	10	10	10		
a. b ₁ a ₁ t ₁ p ₁			-0.5	-1	-15	Only fully active S
b. b ₁ a ₁ t ₁ p ₀	.5 -0.5			-0.75	-12.5	Faithful realization of weak S
c. b ₁ a ₁ p _{0.5}	-0.5	-1			-15	Deletion of fully active S
r≊ d. b ₁ a ₁ t ₁		-0.5			-5	Deletion of weakly active S

(4) FULL!: Assign violation 1-X for every output element with activity X.

OCP 2020, Zimmermann

Arguments for GSR

- 1. Embedded in a general **computational architecture for cognition** (=Gradient Symbolic Computation Smolensky and Goldrick, 2016)
- 2. A unified account for different exceptional phonological behaviours:
 - P liaison consonants in French (Smolensky and Goldrick, 2016)
 - Semi-regularity of voicing in Japanese Rendaku (Rosen, 2016)
 - allomorphy in Modern Hebrew (Faust and Smolensky, 2017)
 - lexical accent in Lithuanian (Kushnir, 2017)
 - Determined to the sandhi in Oku (Nformi and Worbs, 2017)
 - tone allomorphy in San Miguel el Grande Mixtec (Zimmermann, 2017*a*,*b*)
 - P lexical stress in Moses Columbian Salishan (Zimmermann, 2018c)
 - exceptional tone (non)spreading in San Molinos Mixtec (Zimmermann, 2018a)

 - Stress-syncope interaction in Levantine Arabic (Trommer, 2018a)
 - (interacting) ghost segments in Welsh (Zimmermann, 2018b)
 - *●* ...

Ibibio

(Benue-Congo/Lower-Cross; Harris and Urua (2001); Akinlabi and Urua (2002); Hyman (2015))

- no stress prominence: evidence for trochaic feet from templates and phonotactic constraints:
 - ${\boldsymbol{\mathscr{P}}}~\phi\text{-initial }\sigma$ shows greater C-and V-inventory contrasts
 - 𝔅 φ-medial CC-sequences **assimilate** (e.g. (VpkV)_φ -> (VptV)_φ)
 - 𝔅 φ-medial **lenition** for stops (e.g. (VkV)_φ -> (VxV)_φ
- $\boldsymbol{\mathfrak{F}} \phi$ are left-aligned with left edge of a stem

Ibibio Templates

- no minimality condition on surface forms for monosyllabic stems (5-a)
- but a restriction to (relatively) unmarked trochaic LL or HL feet for bisyllabic stems (5-b): *LH
- (5) Surface forms for verb roots: Imperative

a.	CV	wà	'sacrifice'
	CVC	wàt	'paddle'
	CVVC	wààk	'tear'
b.	CVCV	sàŋá	'walk'
	CVC:V	dápiá	'dream' (vb)
	CV:CV	fáːŋá	'argue'

Ibibio Data

Ibibio Templates: Negative

(6)	Exar	nple for	HL: Negati	ve	
	a.	CV ₁ ->	- CV ₁ ːɤÝ ₁		
		sé	'look'	n-sérvé	'I am not looking'
		nò	'give'	n-nàrsó	'I am not giving'
	b.	CV ₁ C ·	$\rightarrow CV_1C$	1	
		dép	'buy'	í-dép r é	's/he is not buying'
		dóm	'bite'	n-dómːó	'l'm not biting'
	c.	CV:C -	$\rightarrow CV_1 C_1 V$	′ ₁	
		wèım	'flowing'	wèɪmé	'not flowing'
		kórt	'read/call'	kóːró	'not reading/calling'

 \sim /-sÝ/ suffixed and first stem σ is heavy (VL in (6-a)) superheavy σ avoided by C-deletion rather than V-shortening (6-c) Ibibio Data

Ibibio Templates: Reflexive

(7)	LL: F	Reflexiv	e/Passive		
	a.	CV ₁ –	> CV ₁ ×Ý ₁		
		kΰ	'gather'	kává	'be gathered'
	b.	CV ₁ C	$\rightarrow CV_1CV_1$		
		yàt	'wear a hat'	yàrá	'wear a hat on oneself'
		bót	'create/mold'	bóró	'be shaped'
	с.	CV:C	$\rightarrow CV_1C_1 \dot{V}_1$		
		wàːk	'tear'	wàvá	'be torn to pieces'
		dáːn	'talk smoothly'	dónó	'be smooth'

 \sim /-vV/ is suffixed and first stem σ is **light** (V-shortening in (7-c) and affix-C-deletion in (7-b+c))

(7-a) is in fact avoided; it's the form given when forced to use suffix

Ibibio Data

Ibibio Templates: Overview

(8)			Імр	Neg	Refl	
				HL; /-kÝ/	LL; /-ъÝ/	
	a.	CV	wà	nsérvé	kává	
		CVC	wàt	í-dép : é	yàrá	
		CV:C	wààk	wèːmé	wàxá	
	b.	CVCV	sàŋá	sàŋáké	sàŋá	-
		CVC:VC	dáp:á	dápːáké	dáp:á	
		CV:CV	fáːŋá	fáːŋáké	fáːŋá	
		CVCV	sàŋá	sàŋáké	sàŋá	

V-Shortening V-Lengthening

C-Deletion C-Deletion+V-Shortening

Ibibio: GSR account in a nutshell

Feet with different activities

- $\clubsuit \ \phi$ with default activity ϕ_1 tolerates sub-minimal monomoraic feet but not *LH-feet
- ≈ NEG: a φ with activity $φ_2$ that only tolerates unmarked HL trochees → LL feet violate STW×2
- 𝔅 Refl: a φ with activity $φ_{0.5}$ that doesn't license a heavy foot-head → HL feet violate WTS×0.5

The (exemplifying) weights in the following are calculates with the MaxEnt grammar tool (Hayes, 2009)

Constraints I

- (9) Faithfulness
 - a. Id_{lg}V

Assign -X violation for every input-vowel $_{\rm X}$ with a different length in the output.

b. MaxS

Assign -X violation for every segment S_x that is present in the input but not the output.

c. DepS

Assign -X violation for every segment S_x that is present in the output but not the input.

- (10) Markedness
 - a. *V:

Assign -X violation for every long vowel V_X .

b. *C:

Assign -X violation for every long consonant C_X .

Constraints II

- (11) Markedness
 - а. FтB

Assign -X violation for every ϕ_X that is not binary.

b. StW

Assign -X violation for every ϕ_{X} that does not have a heavy σ in its head position.

с. WтS

Assign -1-X violation for every heavy σ that is not in the head position of $\phi_{X\geq 1}.$

 \clubsuit (11-b) is violated more if the head in a more active ϕ is not heavy

 $\boldsymbol{\And}$ (11-c) is not fully satisfied if a heavy σ is only in a weak ϕ

Constraints III

- (12) are not given in the following tableaux there are no superheavy (medial) syllables, no unassimilated intervocalic CC sequences, or non-geminate intervocalic stops
- underspecified V's get their segmental content via copying of preceding vowel features
- (12) a. AgreeC
 - Assign -X violation for every consonant C_X that is immediately followed by a consonant with different feature specifications.
 - b. ${}^*\sigma_{\mu\mu\mu}$ Assign -X violation for every σ_X that dominates more than 2 moras.
 - с. *Stop

Assign -X violation for every stop consonant C_X .

Ibibio GSR account

Foot with activity 1: Sub-minimal CV tolerated

(13)

wà		STW 40	S DepS	∧14	∧ ^{D⊓} qI 14	;> * 7	; , 7	SXAM 4	L FTB	
® a.	(wà) _{φ1}			-1					-1	-8
b.	(wàː) _{φ1}				-1	-1				-21
с.	(wà?) _{φ1}		-1							-22

(14) a. $I_{D_{LG}}V + {}^*V_{\Sigma} > S_TW + F_TB$

b. DepS > StW + FtB

Foot with activity 1: Marked LH-trochee excluded

(15)

sàŋáː		SIM 40	S DepS	∧⊥S 14	л ^{ог} а 14	:>* 7	;C* 7	A MaxS	L FTB	
a.	(sàŋáː) _{φ1}	-1		-1		-1				-61
r≊ b.	(sàŋá) _{φ1}			-1	-1					-28
c.	(sàːŋá) _{φ1}				-2	-1				-35

(16) a. $WTS + *VI > STW + ID_{LG}V$

b. $ID_{LG}V + *V \ge STW$

- ٦ V-shortening avoids *LH
- \sim V-lengthening does not create unmarked HL

Negative Foot with activity 2: Unmarked (HL) for CVC

(17)

	SIM 40	25 DepS	M12 14	N ^{DLD}	:>* 7	;; 7	A MAXS	L FTB	
🖙 a. (dépːé) _{φ2}						-1			-7
b. (déɪpé) _{φ2}				-1	-1		-1		-25

(18) $I_{D_{LG}}V + V_{Z} + MaxS > C_{Z}$

 realization of the suffix (+C-assimiliation and V-copy) results in perfect HL-trochee

Negative Foot with activity 2: Unmarked (HL) created for CVVC

(19)

φ2									
wèːm + kÝ	SIM 40	SdDEPS 22	M1S 14	∧ ^{D1} D1 14	:^ * 7	;; * 7	A MaxS	1 FTB	
🖙 a. (wèːmé) _{φ2}					-1		-1		-11
b. (wèmːé) _{φ2}				-1		-1			-21

(20) $I_{D_{LG}}V + *C :> MaxS + *V :$

🗞 superheavy syllables is rather avoided by C-deletion than V-shortening

Negative Foot with activity 2: Unmarked (HL) created for CV

(21)

	φ ₂									
sé +	kÝ	WTS	DEPS	SτW	ID _{LG} V	:^* I	- *C:	MAXS	FTB	
		40	22	14	14	7	7	4	1	
a.	(sévé) _{φ2}			-2						-28
r≊ b.	(séːvé) _{φ2}				-1	-1				-21
с.	(séኣːé) _{φ2}		-1				-1			-29

(22) a.
$$2 \times STW > ID_{LG}V + *V$$

D.
$$DEPS + {}^{*}CI > ID_{LG}V + {}^{*}VI$$

₹ VL to create unmarked LH-trochee

1

Interim Summary: Two different feet

- (23) Default φ_1 : STW violation tolerated (15) $ID_{LG}V + {}^*V_{L} > STW$

 \blacktriangleright the default ϕ_1 remains sub-optimal LL but the stronger negative ϕ needs to be LH

Reflexive foot with activity 0.5: A heavy head is not tolerated

(25)

φ0.5									
kó + sÝ	WTS	DepS	SτW	I _{DLG} V	*V:	°.	MAXS	FтВ	
	40	22	14	14	7	7	4	1	
🖙 a. (kɔ́ɤɔ́) _{φ0.5}			-0.5						-7
b. (káːɤá) _{φ0.5}	-0.5			-1	-1				-41
c. (kɔ́ɤːɔ́) _{φ0.5}	-0.5	-1				-1			-49

(26) a. $0.5 \times WTS + ID_{LG}V + {}^*VI > 0.5 \times STW$

b. $0.5 \times WTS + DEPS + *CI > 0.5 \times STW$

 $\boldsymbol{\mathfrak{F}}$ no heavy head-syllable is created: the weak $\phi_{0.5}$ does not license it

Reflexive foot with activity 0.5: A heavy head is not tolerated

(27)

φ0.5									
yàt + sÝ	WτS	DepS	SτW	I _{DLG} V	*V:	°.	MaxS	FтВ	
	40	22	14	14	7	7	4	1	
a. (yàtːá) _{φ0.5}	-0.5					-1			-27
ter b. (yàrá) _{φ0.5}			-0.5				-1		-11
c. (yàːrá) _{φ0.5}	-0.5			-1	-1		-1		-45

(28) a. $0.5 \times WTS + {}^{*}CI > 0.5 \times STW + MaxS$

b. $0.5 \times WTS + {}^*VI + Id_{LG}V > 0.5 \times STW$

 ${\scriptstyle \textcircled{\sc black \below \sc black \s$

Reflexive foot with activity 0.5: A heavy head is not tolerated

(29)

φ0.5									
wàːk+ sÝ	WτS	DepS	SτW	I _{DLG} V	:^*	°.	MaxS	FTB	
	40	22	14	14	7	7	4	1	
a. (wàːɤá) _{φ0.5}	-0.5				-1		-1		-31
b. (wàkːá) _{φ0.5}	-0.5			-1		-1			-41
🖙 c. (wàγá) _{φ0.5}			-0.5	-1			-1		-24

(30) a. $0.5 \times WTS + {}^*VI > 0.5 \times STW + ID_{LG}V$

b. $0.5 \times WTS + C_{L} > 0.5 \times STW + MAXS$

 \clubsuit C-deletion and V-shortening to avoid a heavy head in a weak $\phi_{0.5}$

Ibibio: Summary

Reflexive foot $\varphi_{0.5}$

does not tolerate heavy σ-head: C-deletion for CVC, V-shortening and C-deletion for CVVC

Default foot ϕ_1

- 🔈 tolerates to be sub-minimal: No V-lengthening/epenthesis for CV
- \sim does not tolerate marked LH: V-shortening for (hypothetical) CVCVVC

Negative foot φ_2

- 🗞 must have unmarked shape HL: V-lengthening for CV
- &~ C-deletion for CVVC to avoid a superheavy σ

Ibibio Templates: Bisyllabic stems

Negative

- $\boldsymbol{\mathfrak{F}}$ no templates effect and /-ké/ added
- control follows since high-ranked AlignR/L(stem, φ) is necessarily violated: affixed φ cannot be realized if it is not perfectly aligned with stem^a
- no V-copying since INTEGRITY-violations are only possible in edge syllables: /e/ is default segment

^aCopied stem-V in suffix is as 'stem'.

Reflexive

- \sim no surface effect for bisyllabic stems
- follows since high-ranked ALIGNL(STEM,φ) is necessarily violated: affixed φ cannot be realized if it is not perfectly aligned with stem
- $\stackrel{_{\scriptstyle \sim}}{\underset{\scriptstyle \sim}{}} no \ content \ for \ the \ suffix \ since \ it \ is \ already \ integrated \ under \ the \ \phi-node:$

Ibibio Templates: Alternative Akinlabi and Urua (2002)

- **&** based on **morpheme-specific templatic constraints**
- \sim immunity of bisyllabic stems: those are stems + high-ranked IDENT_{STEM}
- (31) a. INFLSTEM (p.127) The inflectional stem is a heavy-light trochee.
 b. REFLSTEM (p.140) The reflexive/passive stem is a light-light trochee.
 - c. IDENT_{STEM} (p.138) Input-Output forms of 'stems' remain unchanged.

More morphologically distinct templates

German Allomorphy (Wiese, 2001)

Past participle allomorphy /g_∂-/

a.	gə–'zuːxt	'searched'	gə− (ˈσ) φ	b.	∫maˈʀɔtst	'freeloaded'	*gə–(σ)φ('σ)φ
	gə-ˈhai͡ʀaːtət	'married'	gə–(ˈσσσ)φ		dısku'ti r et	'discussed'	*gə–(σσ) _φ ('σ) _φ

 \sim /gə-/ only if the base contains a single foot (mono-, bi-, or trisyllabic)

→ preferred past participle allomorph /g∂φ_{1.5}/ licenses mono-, bi-, or trisyllabic trochees

Nominalizer allomorphy /-k \widehat{at} / ~/-h \widehat{at} /

- a. 'hø:flıç-kaît 'courtesy' (' $\sigma\sigma$) $_{\phi}$ -kaît b. ' \int ø:n-haît 'beauty' g $_{\theta}$ 'le:vzam-kaît 'eruditeness' (σ) $_{\phi}$ (' $\sigma\sigma$) $_{\phi}$ -kaît Int $\partial_{R\theta}$ 'sant-haît 'interestingness'
- & /kait/ suffixes to a bisyllabic trochee only; else /hait/
- → Preferred nominalizer allomorph / ϕ_2 kait/ licenses mono-, bi-, or trisyllabic trochees

Nuu-Chah-Nulth reduplication

(e.g. Ahousaht (Kim, 2003b,a, 2008; Zimmermann, 2017c))

 \sim different monosyllabic prefixing reduplicants:

(32) Prosodic affixation account: Syllable strength

σ ₁	σ ₁	σ ₁
μ	μμ	
coda	coda	coda
short V	long V	length of base
σ _{1.5}	σ _{1.5}	σ _{1.5}
μ	μμ	
no coda short V	no coda Iong V	no coda length of base

Morphologically distinct templates: Prediction about markedness reduction

(33)

	*Marked *Marked		*Marked
	Structure A	Structure B	Structure C
Weak, e.g. φ _{0.5}	 ✓ 	✓	~
Default, e.g. ϕ_1	~	✓	×
Strong, e.g. $\phi_{1.5}$	~	×	×
Stronger, e.g. φ ₂	×	×	×

→ the more active, the less marked

Morphologically distinct templates: Patterns impossible from gradient strength/markedness reduction

(34)

	*Marked	*Marked	*Marked
	Structure A	Structure B	Structure C
Weak, e.g. φ _{0.5}	 ✓ 	✓	 ✓
Default, e.g. ϕ_1	~	✓	×
Strong, e.g. $\varphi_{1.5}$	~	×	×
???	~	×	\checkmark

→ implicational relations between markedness reduction is predicted

- The assumption of GSR predicts morphologically distinct templates:
 Within one language, the same prosodic category can license
 different degrees of markedness depending on its activity
- This claim crucially relies on activity in the output and hence gradient markedness violations
- GSR predicts an inventory of prosodic templates with implicational markedness differences for every language.

References

- Akinlabi, Akinbiyi and Eno Urua (2002), 'Foot structure in the Ibibio verb', *Journal of African Languages* and Linguistics 23, 119–160.
- Amato, Irene (2018), 'A gradient view of Raddoppiamento Fonosintattico', ms., University of Leipzig.
- Archangeli, Diana (1991), 'Syllabification and prosodic templates in Yawelmani', NLLT 9, 231-284.
- Braver, Aaron (2013), Degrees of incompleteness in neutralization: Paradigm uniformity in a phonetics with weighted constraints, PhD thesis, Rutgers The State University of New Jersey-New Brunswick.

Broadbent, Sylvia (1964), The Southern Sierra Miwok Language, University of California Press, Berkeley.

Downing, Laura J. (2006), Canonical Forms in Prosodic Morphology, Oxford University Press, Oxford.

- Faust, Noam and Paul Smolensky (2017), 'Activity as an alternative to autosegmental association', talk given at mfm 25, 27th May, 2017.
- Harris, John and Eno-Abasi Urua (2001), 'Lenition degrades information: consonant allophony in Ibibio', Speech, Hearing, and Language: Work in progress 13, 72–105.
- Hayes, Bruce (2009), 'Manual for maxent grammar tool', online available at http://linguistics.ucla.edu/people/hayes/MaxentGrammarTool/ManualForMaxentGrammarTool.pdf.

Hyman, Larry (1985), A theory of phonological weight, Foris Publications, Dordrecht.

- Hyman, Larry M. (2015), 'Positional prominence vs. word accent: Is there a difference?', UC Berkeley Phonology Lab Annual Report.
- Inkelas, Sharon (2015), Confidence scales: A new approach to derived environment effects, in Y. E.Hsiao and L.-H.Wee, eds, 'Capturing Phonological Shades Within and Across Languages', Cambridge Scholars Publishing, Newcastle upon Tyne, pp. 45–75.
- Jang, Hayeun (2019), 'Emergent phonological gradience from articulatory synergies: simulations of coronal palatalization', talk, presented at the LSA 2019, New York, January 05, 2019.

- Kenstowicz, Michael and Jerzy Rubach (1987), 'The phonology of syllabic nuclei in Slovak', *Language* **63**, 463–497.
- Kim, Eun Sook (2003*a*), 'Patterns of reduplication in Nuu-chah-nulth', *Proceedings of NELS 33* pp. 127–146.
- Kim, Eun-Sook (2003*b*), *Theoretical issues in Nuu-chah-nulth phonology and morphology (British Columbia)*, UMI, Ann Arbor, MI.
- Kim, Eun-Sook (2008), 'Multiple patterns of reduplication in Nuuchahnulth: A templatic approach', Language Research 44, 63–94.
- Kushnir, Yuriy (2017), 'Accent strength in Lithuanian', talk, given at the workshop on Strength in Grammar, Leipzig, November 12, 2017.
- Legendre, Geraldine, Yoshiro Miyata and Paul Smolensky (1990), 'Harmonic grammar a formal multi-level connectionist theory of linguistic well-formedness: Theoretical foundations', *Proceedings of the 12th annual conference of the cognitive science society* pp. 388–395.
- McCarthy, John and Alan Prince (1986), 'Prosodic morphology 1986', Technical Report 32, Rutgers University Center for Cognitive Science, 1996.
- McCarthy, John and Alan Prince (1994), The emergence of the unmarked: Optimality in prosodic morphology, *in* M.González, ed., 'Proceedings of NELS 24', GLSA, Amherst, pp. 333–379.
- McCarthy, John J. (1993), Template form in prosodic morphology, *in* e. a.Smith, Stvan L., ed., 'Papers from the Third Annual Formal Linguistics Society of Midamerica Conference', IULC Publications, Bloomington, pp. 187–218.
- McCarthy, John J. and Alan Prince (1990), 'Foot and word in prosodic morphology: The Arabic broken plural', *Natural Language and Linguistic Theory* **8**, 209–283.
- McCollum, Adam (2018), 'Gradient morphophonology: Evidence from Uyghur vowel harmony', talk at AMP 2018, San Diego, October 06, 2018.

- Nformi, Jude and Sören Worbs (2017), 'Gradient tones obviate floating features in Oku tone sandhi', talk at the Workshop on Strength in Grammar, Leipzig, November 10, 2017.
- Noske, Roland (1985), Syllabification and syllable changing processes in Yawelmani, *in* H.van der Hulst and N.Smith, eds, 'Advances in Nonlinear Phonology', Foris, pp. 335–361.
- Potts, Christopher, Joe Pater, Karen Jesney, Rajesh Bhatt and Michael Becker (2010), 'Harmonic grammar with linear programming: From linear systems to linguistic typology', *Phonology* pp. 77–117.
- Prince, Alan and Paul Smolensky (1993/2002), 'Optimality theory: Constraint interaction in generative grammar', [first circulated as Prince & Smolensky (1993) Technical reports of the Rutgers University Center of Cognitive Science], ROA 537-0802.
- Rosen, Eric (2016), Predicting the unpredictable: Capturing the apparent semi-regularity of rendaku voicing in Japanese through Harmonic Grammar, *in* E.Clem, V.Dawson, A.Shen, A. H.Skilton, G.Bacon, A.Cheng and E. H.Maier, eds, 'Proceedings of BLS 42', Berkeley Linguistic Society, Berkeley, pp. 235–249.
- Rosen, Eric (2018), 'Evidence for gradient input features from Sino-Japanese compound accent', poster, presented at AMP 2018, San Diego, October 06, 2018.
- Sande, Hannah (2017), Distributing morphologically conditioned phonology: Three case studies from Guébie, PhD thesis, University of California, Berkeley.
- Sloan, Kelly Dawn (1991), Syllables and Templates: Evidence from Southern Sierra Miwok, PhD thesis, MIT.
- Smolensky, Paul and Matthew Goldrick (2016), 'Gradient symbolic representations in grammar: The case of French liaison', Ms, Johns Hopkins University and Northwestern University, ROA 1286.

- Tranel, Bernard (1996), Exceptionality in Optimality Theory and final consonants in French, in K.Zagona, ed., 'Grammatical Theory and Romance Languages: Selected papers from the 25th Linguistic Symposium on Romance Languages (LSRL XXV)', John Benjamins, Amsterdam, pp. 275–291.
- Trommer, Jochen (2018*a*), 'The layered phonology of Levantine Arabic syncope', poster, presented at AMP 2018, San Diego, October 07, 2018.
- Trommer, Jochen (2018*b*), 'The layered phonology of Levantine Arabic syncope', talk at the Workshop on Cyclic Optimization, Leipzig, May 18, 2018.
- Trommer, Jochen and Eva Zimmermann (2018), 'The strength and weakness of tone: A new account to tonal exceptions and tone representations', invited talk, given at the Phorum, UC Berkeley, March 19, 2018.
- Urbanczyk, Suzanne (2006), 'Reduplicative Form and the Root-Affix Asymmetry', *Natural Language and Linguistic Theory* 24, 179–240.
- Vaxman, Alexandre (2016*a*), Diacritic weight in the extended accent first theory, *in* 'University of Pennsylvania Working Papers in Linguistics', University of Pennsylvania.
- Vaxman, Alexandre (2016*b*), How to Beat without Feet: Weight Scales and Parameter Dependencies in the Computation of Word Accent, PhD thesis, University of Connecticut.
- Walker, Rachel (2019), 'Gradient feature activation and the special status of coronals', talks, presented at P Φ F 2019, April 05, 2019.
- Wiese, Richard (2001), 'Regular morphology vs. prosodic morphology? the case of truncations in German', *Journal of Germanic Linguistics* **13**, 131–177.
- Yearley, Jennifer (1995), Jer vowels in Russian, *in* J.Beckman, L.Walsh Dickey and S.Urbanczyk, eds, 'Papers in Optimality Theory', GLSA Publications, Amherst, Mass., pp. 533–571.

- Zimmermann, Eva (2017*a*), 'Being exceptional is being weak: tonal exceptions in San Miguel el Grande Mixtec', poster, presented at AMP 2017, New York, September 16, 2017.
- Zimmermann, Eva (2017*b*), 'Gradient symbols and gradient markedness: a case study from Mixtec tones', talk, given at the 25th mfm, 27th May, 2017.
- Zimmermann, Eva (2017c), Multiple reduplication as non-segmental affixation: A case study from Nuuchahnulth, in A.Lamont and K.Tetzloff, eds, 'Proceedings of NELS 47', GLSA, Amherst, pp. 285–294.
- Zimmermann, Eva (2018*a*), 'Exceptional non-triggers are weak: The case of Molinos Mixtec', talk at OCP 15, January 13, 2018.
- Zimmermann, Eva (2018*b*), 'Gradient symbolic representations and the typology of ghost segments: An argument from gradient markedness', talk, given at AMP 2018, San Diego, October 06, 2018.
- Zimmermann, Eva (2018c), Gradient symbolic representations in the output: A case study from Moses Columbian Salishan stress, in S.Hucklebridge and M.Nelson, eds, 'Proceedings of NELS 48', pp. 275–284.
- Zimmermann, Eva (2019), 'Faded copies: Reduplication as sharing of activity', talk, to be given at OCP 16.
- Zoll, Cheryl (1996), Parsing below the segment in a constraint-based framework, PhD thesis, UC Berkeley.

Eva.Zimmermann@uni-leipzig.de

Appendix: GSR and true gradience

 \sim no inherent restriction on gradient contrasts within a language

- 3 types of segments in Welsh:
 - $/k_{1.0}/$ $/r_{0.6}/$ $/g_{0.2}/$
- 3 types of association lines in Oku (Trommer and Zimmermann, 2018): /H−_{1.0}•/ - /H−_{0.6}•/ - /H−_{0.4}•/
- \checkmark 4 (derived) segment types in Levantine Arabic (Trommer, 2018b): $/i_{0.7}/$ $/i_{0.6}/$ $/i_{0.5}/$ $/i_{0.3}/$
- $\checkmark~5$ types of feet in Moses Columbian Salish (Zimmermann, 2018c): $/\phi_{1.0}/$ $/\phi_{0.9}/$ $/\phi_{0.8}/$ $/\phi_{0.6}/$ $/\phi_{0.4}/$

\sim vs. alternatives

- most accounts based on autosegmental defectivity that only allow a binary distinction into [±defective] (e.g. Hyman, 1985; Noske, 1985; Kenstowicz and Rubach, 1987; Sloan, 1991; Yearley, 1995; Tranel, 1996; Zoll, 1996)
- accounts that adopt 'strength' as a binary division (Inkelas, 2015; Vaxman, 2016*a,b*; Sande, 2017)

GSR: Surface activity and phonetic interpretation

\sim phonetic gradience in phonology:

- subphonemic gradience in word-final devoicing, nasal place assimilation, flapping (Braver, 2013, e.g.)
- vowel harmony is gradient; gets weaker the farther it spreads (McCollum, 2018)
- → a convincing example would be one where phonetic gradience and exceptional phonological behaviour stemming from underlying weakness coincide

Open Question: The source for strength in GSR

- \sim lexical contrast for phonological elements
- 🗞 lexical contrast for whole morphemes (Faust and Smolensky, 2017)

& derived in the phonology:

- Gradient representations can mature or decay across layers' (Trommer, 2018b)
- stress strengthens elements (Faust and Smolensky, 2017; Amato, 2018; Trommer, 2018b)
- floating strength strengthens elements (Amato, 2018)
- fission is weakening/distribution of activity (Zimmermann, 2019)
- certain features have an inherent strength and feature change thus implies strength adjustment (Walker, 2019)