Segmental Strength: A Typology of Unstable Segments

Eva Zimmermann

Special Session 'Inside Segments'

LSA 2019, New York January 06, 2019

- * Ghost segments are weakly active segments and thus
 - both phonological and lexical factors can contribute to the (non)realization of a ghost segment (→ Catalan).
 - ghost segments can only gradiently contribute to markedness if they surface. (→ Nuu-chah-nulth).
 - 3. different **types** of ghost segments exist and can coexist in one language (→ Welsh).

Gradient Representations: Assumptions

Background: Gradient Symbolic Representation (=GSR)

- All linguistic symbols have activity that can gradiently differ with 1=fully active. (Smolensky and Goldrick, 2016; Rosen, 2016)
- * Any change in activity is a faithfulness violation different activities result in gradient violations of faithfulness.
- * Elements can be weakly active in the output and thus violate markedness gradiently. (Zimmermann, 2017*a*,*b*; Faust and Smolensky, 2017)
- * Grammatical computation modeled inside Harmonic Grammar where constraints are weighted. (Legendre et al., 1990; Potts et al., 2010)

GSR: Gradient Constraint Violations

- * Weakly active segments:
 - they are easier to delete than 'normal' segments (=MAX-S violated to a lesser degree)
 - it is costly to realize them
 (=activity inserted (1-a) or weak activity in the output (1-b+c))
 - · they violate/satisfy markedness constraints to a lesser degree

(1) Gradient Activity=gradient constraint violations

b ₁ a	b1a1t1-p0.5		Max-S	Dep-S	*CC		
		10	10	10	10		
a.	b ₁ a ₁ t ₁ p ₁			-0.5	-1	-15	Only fully a
b.	b1a1t1p0.5	-0.5			-0.75	-12.5	Faithful rea
с.	b1a1p0.5	-0.5	-1			-15	Deletion of
™ d.	b ₁ a ₁ t ₁		-0.5			-5	Deletion of

Only fully active S Faithful realization of weak S Deletion of fully active S Deletion of weakly active S

(2) FULL: Assign violation 1-X for every output element with activity X.

Ghost segments: Three case studies

Ghost segments <a>!

(4)

(3) 'Segments that only surface in certain contexts.' (Yang, 2004, 71)
 (Archangeli, 1984; Hyman, 1985; Rubach, 1986; Kenstowicz and Rubach, 1987;
 Szypra, 1992; Yearley, 1995; Tranel, 1995, 1996; Zoll, 1996)

	/pan <u>()</u> /	/tump/
Phonological context 1:	pan	tump
Phonological context 2:	pan <mark>k</mark> -u	tump-u

→ GSR: Ghost segments are underlyingly weak segments

- * weak activity is a lexical property of certain segments inside certain morphemes
- * their activity might be too low to be realized without further 'support'

1. Relevance of Lexical and Phonological factors: Catalan

5)		Sg	Pl	
	a.	gót	góts	ʻglass(es)' (masc.)
		tákə	tákəs	'stain(s)' (fem.)
	b.	pás	pásus	'step(s)' (masc.)
		grás	grásus	ʻfat' (masc.)
	c.	mosu	mosus	'lad' (cf. fem. /mos[ə]/)
		monj <mark>u</mark>	monj <mark>u</mark> s	'monk/nun' (cf. fem. /monj[ə]/)

(Fabra, 1990; Wheeler, 1999; Hualde, 2002; Bonet et al., 2007)

- sibilant-final masc. N's show /u/ (≠epen. /∂/) before plural-/s/ (6-b)
 ⇒ ghost V avoids a marked structure /*SibSib/
- * other N's always show /u/ (6-c)
 - → same ghost V is **lexically determined**

(5

1. Catalan Ghost segments: GSR Account

(6) $/-u_{\Omega}/$ unrealized without further support: **0.5xDep-V** \gg **0.5xMax-V**

$g_1 a_1 t_1 - u_{0.5} - s_1$	Max-C 50	*SS 40	Full! 30	Dep-V 26	Max-V 20	Int-V 5	
r≊ b. g ₁ ⊃ ₁ t ₁ s ₁					-0.5		-10
c. g ₁ 0 ₁ t ₁ u ₁ s ₁				-0.5			-13

(7) $/-u_{fl}/$ realized if markedness avoided: *ss +0.5xMax-V \gg 0.5xDep-V

$p_1a_1s_1-u_{0.5}-s_1$	Max-C	*SS	Full!	Dep-V	Max-V	Int-V	
	50	40	30	26	20	5	
b. p ₁ a ₁ s ₁ s ₁		-1			-0.5		-50
r≊ c. p ₁ a ₁ s ₁ u ₁ s ₁				-0.5			-13

(8) $/-u_{\square}/$ realized if it can coalesce with another $/-u_{\square}/$

$m_1o_1s_1u_{0.5}^a - u_{0.5}^b$	Max-C	*SS	Full!	Dep-V	Max-V	Int-V	
	50	40	30	26	20	5	
a. m ₁ 0 ₁ s ₁					-1		-20
r≊b. m₁o₁s₁u₁ ^{a,b}						-1	-5

2. Gradient Markedness: Nuuchahnulth

* some suffix-initial C's only surface post-vocalically (Kim, 2003, 178)

(9) a.	V	?atła−(q)umł	?atła q qumł	'two dollars'
	C	tł'is−(q)umł	tł'is .s umł	'sth. white and round'
b.	V	?u-(k)łaː-si∫ Eun-Sook	?u kk. łaːsi∫	'My name is Eun-Sook'
	C	k ^w is-(k)łaː-k'uk-?i∫	k ^w isłaːk'uk?i∫	'It seems like he has a different name'

* a ghost C only surfaces if it does not create a marked structure:

- Avoidance of a coda for $/-C_{\bigcirc}V$ (9-a): *VC.C_{\bigcirc}V
- Avoidance of a cluster for −C_□CV (9-b): *VCC_□.CV
- **But** realization in (9-b) creates the marked structure (=Coda) that non-realization in (9-a) avoids!
 - → a ranking paradox for OT emerges: *Coda ≫ Max[∩] for (9-a) but Max[∩] ≫ *Coda for (9-b)

2. Nuuchahnulth Ghost segments: GSR Account

(10) $/-C_{\square}V/: C_{\square}$ not realized after a C (=C_{\square} forces C into coda position)

$t_{1}i_{1}s_{1}-q_{0.5}u_{1}$	Max-S	Full!	*CC	*Coda	
	20	12	10	7	
a. tł₁i₁s₁.q _{0.5} u₁		-0.5	-1	-1	-30
r≊ b. tł₁i₁.s₁u₁	-0.5		-1		-27

$0.5xFull! + *Coda \gg 0.5xMax-S$

(11) $/-C_{\square}CV/: C_{\square}$ realized after a V (= C_{\square} is itself in coda position)

$r_1u_1 - k_{0.5} r_1ar_1$	Max-S	Full!	*CC	*Coda	
	20	12	10	7	
\mathbb{R} a. $?_1 u_1 k_{0.5} \cdot k_1 a x_1$		-0.5		-0.5	-9.5
b. $?_1u_1.4_1at_1$	-0.5				-10

 $0.5xMax-S \gg 0.5xFull! + 0.5x*Coda$

3. Different ghost segments within one language: Welsh

- * some C's only surface before a vowel (12-a)
- * definite marker alternates: /yr/ (__ V), /y/ (__ C), /'r/ (V_) (12-b)

(12)	a.	guda <mark>g</mark> eraill	'with others'	
		guda gwên	'with a smile'	
	b.	yr afon	'the river'	yr (=ər) V
		<mark>y</mark> llyfr	'the book'	y (=ə) C
		o'r afon	'from the river'	/'r/ (-r) V overriding a b
		o 'r llyfr	'from the book'	/ 1/ (=1) v, overnuing a.+b.
	c.	guda'r nod	'with the aim'	(*guda <mark>g y</mark> nod)

(Hannahs and Tallerman, 2006)

* combination of both shows different default states for ghost C's:

- $/g_{\square}$ / only realized if it does not avoid a hiatus (='appearing ghost')
- $/y_{\square}r_{\square}/$ only deleted if they create a hiatus/coda (='disappearing ghosts')

3. Welsh Ghost segments: GSR Account

- * different realization thresholds:
 - g0.2 is never realized unless it avoids a *HIAT violation
 - $y_{0.6}r_{0.6}$ are always realized unless they create a *HIAT/*CODA violation

(13)

$g_1u_1d_1a_1g_{0,2} y_{0,6}r_{0,6} C_1V_1$		RM	Max-S	Dep-S	*[CC	*Ніат	*Coda	
		100	10	10	8	7	5	
a.	g1u.1d1a1. <mark>g1y1r1</mark> .C1V1			-1.6			-1	-21
b.	g1u.1d1a1. y1r1 .C1V1		-0.2	-0.8		-1	-1	-22
¤₹ C.	g ₁ u. ₁ d ₁ a ₁ r ₁ .C ₁ V ₁		-0.8	-0.4			-1	-17
d.	g1u.1d1a1. g1y1 .C1V1		-0.6	-1.2				-18

* vs. (13-d): $/g_{0.2}/$ is never realized to avoid a *Coda violation (0.8×Dep-S \gg *Coda) * vs. (13-a): $/g_{0.2}/$'s default state is to not be realized (0.8×Dep-S \gg 0.2×Max-S)

Discussion

Discussion

- * the GSR assumption that segments differ in their underlying presence allows to account for the typology of ghost segments
- in contrast to accounts where weakness is autosegmental defectivity: (e.g. Spencer, 1986; Szypra, 1992; Tranel, 1995, 1996; Faust, 2013)
 - it predicts gradient markedness (cf. Nuu-chah-nulth)
 - it predicts true gradience (cf. Welsh)
- * future research: Weakness in the output predicts phonetic effects that correlate with phonological weakness (=possible but not necessary!)

References

- Archangeli, Diana (1984), Underspecification in Yawelmani Phonology and Morphology, PhD thesis, MIT.
- Bonet, Eulàlia, Maria-Rosa Lloret and Joan Mascaró (2007), 'Allomorph selection and lexical preferences: Two case studies', *Lingua* **117**(6), 903–927.
- Fabra, Pompeu (1990), Gramàtica catalana, Teide, Barcelona.
- Faust, Noam (2013), 'Decomposing the feminine suffixes of Modern Hebrew', Morphology 23, 409-440.
- Faust, Noam and Paul Smolensky (2017), 'Activity as an alternative to autosegmental association', talk given at mfm 25, 27th May, 2017.
- Hannahs, S. J. and Maggie Tallerman (2006), 'At the interface: selection of the Welsh definite article', *Linguistics* 44, 781–816.
- Hualde, José Ignacio (2002), Catalan, Routledge, New York.
- Hyman, Larry (1985), A theory of phonological weight, Foris Publications, Dordrecht.
- Kenstowicz, Michael and Jerzy Rubach (1987), 'The phonology of syllabic nuclei in Slovak', *Language* **63**, 463–497.
- Kim, Eun-Sook (2003), Theoretical issues in Nuu-chah-nulth phonology and morphology (British Columbia), PhD thesis, University of British Columbia.
- Legendre, Geraldine, Yoshiro Miyata and Paul Smolensky (1990), 'Harmonic grammar a formal multi-level connectionist theory of linguistic well-formedness: Theoretical foundations', *Proceedings of the 12th annual conference of the cognitive science society* pp. 388–395.
- Potts, Christopher, Joe Pater, Karen Jesney, Rajesh Bhatt and Michael Becker (2010), 'Harmonic grammar with linear programming: From linear systems to linguistic typology', *Phonology* pp. 77–117.

Discussion

- Rosen, Eric (2016), Predicting the unpredictable: Capturing the apparent semi-regularity of rendaku voicing in Japanese through Harmonic Grammar, *in* E.Clem, V.Dawson, A.Shen, A. H.Skilton, G.Bacon, A.Cheng and E. H.Maier, eds, 'Proceedings of BLS 42', Berkeley Linguistic Society, Berkeley, pp. 235–249.
- Rubach, Jerzy (1986), 'Abstract vowels in three-dimensional phonology: The yers', *The Linguistic Review* 5, 247–280.
- Smolensky, Paul and Matthew Goldrick (2016), 'Gradient symbolic representations in grammar: The case of French liaison', Ms, Johns Hopkins University and Northwestern University, ROA 1286.
- Spencer, Andrew (1986), 'A non-linear analysis of vowel-zero alternations in Polish', *Journal of Linguistics* **22**, 249–280.
- Szypra, Jolanta (1992), 'Ghost segments in nonlinear phonology: Polish yers', Langage pp. 277-312.
- Tranel, Bernard (1995), The representation of French final consonants and related issues, *in* J.Amastae, G.Goodall, M.Phinney and M.Montalbetti, eds, 'Contemporary Research in Romance Linguistics: Papers from the XXII Linguistic Symposium on Romance Languages'.
- Tranel, Bernard (1996), Exceptionality in optimality theory and final consonants in French, *in* K.Zagona, ed., 'Grammatical Theory and Romance Languages: Selected papers from the 25th Linguistic Symposium on Romance Languages (LSRL XXV)', John Benjamins, Amsterdam, pp. 275–291.
- Wheeler, Max (1999), *Catalan: a comprehensive grammar*, Routledge, London. Includes index. URL: http://swbplus.bsz-bw.de/bsz075012650inh.htm
- Yang, So-Young (2004), 'Latent segments in the English indefinite article', *Language and Information Society* pp. 68–83.
- Yearley, Jennifer (1995), Jer vowels in Russian, *in* J.Beckman, L.Walsh Dickey and S.Urbanczyk, eds, 'Papers in Optimality Theory', GLSA Publications, Amherst, Mass., pp. 533–571.

- Zimmermann, Eva (2017*a*), 'Being exceptional is being weak: tonal exceptions in San Miguel el Grande Mixtec', poster, presented at AMP 2017, New York, September 16, 2017.
- Zimmermann, Eva (2017*b*), 'Gradient symbols and gradient markedness: a case study from Mixtec tones', talk, given at the 25th mfm, 27th May, 2017.
- Zoll, Cheryl (1996), Parsing below the segment in a constraint-based framework, PhD thesis, UC Berkeley.

Eva.Zimmermann@uni-leipzig.de